3629-耀同学-Python学科-数据分析 已关闭

3629-耀同学-Python学科-数据分析 扫二维码继续学习 二维码时效为半小时

(0评价)
价格: 免费

重要参数

criterion

为了要将表格转化为一棵树,决策树需要找出最佳节点和最佳的分枝方法,对分类树来说,衡量这个“最佳”的指标 叫做“不纯度”。通常来说,不纯度越低,决策树对训练集的拟合越好。

不纯度基于节点来计算,树中的每个节点都会有一个不纯度,并且子节点的不纯度一定是低于父节点的,也就是 说,在同一棵决策树上,叶子节点的不纯度一定是最低的。

Criterion这个参数正是用来决定不纯度的计算方法的。sklearn提供了两种选择:

1)输入”entropy“,使用信息熵(Entropy) 2)输入”gini“,使用基尼系数(Gini Impurity)

当使用信息熵 时,sklearn实际计算的是基于信息熵的信息增益(Information Gain),即父节点的信息熵和子节点的信息熵之差。

比起基尼系数,信息熵对不纯度更加敏感,对不纯度的惩罚最强。但是在实际使用中,信息熵和基尼系数的效果基 本相同。信息熵的计算比基尼系数缓慢一些,因为基尼系数的计算不涉及对数。另外,因为信息熵对不纯度更加敏 感,所以信息熵作为指标时,决策树的生长会更加“精细”,因此对于高维数据或者噪音很多的数据,信息熵很容易 过拟合,基尼系数在这种情况下效果往往比较好。当模型拟合程度不足的时候,即当模型在训练集和测试集上都表 现不太好的时候,使用信息熵。当然,这些不是绝对的

 

[展开全文]

决策树

1、概述

决策树是一种非参数的有监督学习方法,它能够从一系列有特征和标签的数据中总结出决策规则,以解决分类和回归问题。

2、关键概念:节点

根节点:没有进边,有出边。包含最初的,针对特征的提问。

中间节点:既有进边也有出边,进边只有一条,出边可以有很多条。都是针对特征的提问。

叶子节点:有进边,没有出边,每个叶子节点都是一个类别标签。

子节点和父节点:在两个相连的节点中,更接近根节点的是父节点,另一个是子节点。/3、

3、决策树算法的核心是要解决两个问题:

1)如何从数据表中找出最佳节点和最佳分枝? 2)如何让决策树停止生长,防止过拟合?

4、模块sklearn.tree的使用

 

[展开全文]

什么是sklearn?

sklearn是一个开源的基于python语言的机器学习工具包,它通过numpy、scipy和matplotlib等python数值计算的库实现高效的算法应用,涵盖了几乎所有主流机器学习算法。

 

[展开全文]
temperature是气温, 100度很吓人啦 XD
[展开全文]

数据降维

1.特征选择

2.主成分分析

 

[展开全文]

MinMaxScaler(feature_range=())

feature_range 可以指定在一定的数值范围内

[展开全文]

tf idf

tf:term frenquency词的频率 出现的次数

idf:inverse document frequency 逆文档频率

log(总文档数量/该词出现的文档数量)

 

重要性程度

 

[展开全文]

countvectorizer没有参数

文本都是放在列表里面的可迭代对象

[展开全文]

性能瓶颈,读取速度

格式不太符合机器学习要求数据的格式

 

可用数据集:

Kaggle

UCI

scikit-learn

 

 

[展开全文]

机器学习是从数据中自动分析获得规律(模型),并利用规律对未知数据进行预测

1. 解放生产力

2.解决专业问题

3.提供社会便利

[展开全文]

连续[2:5,1:4]跳跃[[2,1],[3,5]]

[展开全文]
Dino · 2021-05-09 · 自由式学习 0

让机器学习程序替换手动步骤,减少企业的成本,也提高企业的效率

[展开全文]

枚举法

for a in range(0,1001):

[展开全文]

数据分析的流程:

  1. 提出问题
  2. 准备数据
  3. 分析数据
  4. 获得结论
  5. 成果可视化
[展开全文]

# 非监督学习

## k-means (聚类)

> 聚类做在分类之前

[展开全文]

# 分类算法:逻辑回归

> 逻辑回归:线性回归的式子作为输入,解决二分类问题, 也可以得出概率值

## 1、应用场景(基础分类问题:二分类)

- 广告点击率

- 是否为垃圾邮件

- 是否患病

- 金融诈骗

- 虚假账号

## 2、广告点击

- 点击

- 没点击

## 3、逻辑回归的输入与线性回归相同

[展开全文]

# 模型的保存和加载

from sklearn.externals import joblib

 

[展开全文]

## 过拟合与欠拟合

> 问题:训练集数据训练得很好,误差也不大,在测试集上有问题 原因:学习特征太少,导致区分标准太粗糙,不能准确识别处目标

- 欠拟合:特征太少

- 过拟合:特征过多

 

特征选择:

- 过滤式:低方差特征

- 嵌入式: 正则化,决策树,神经网络

 

[展开全文]

## 2、线性回归策略

> 预测结果与真实值有误差

> 回归:迭代的算法,知道误差,不断减小误差,

### 损失函数

 

 

- 最小二乘法之梯度下降

 

 

scikit-learn:

- 优点:封装好,建立模型简单,预测简单

- 缺点:算法的过程,有些参数都在算法API内部优化

[展开全文]

## 集成学习方法-随机森林

### 集成学习方法

> 通过建立几个模型组合来解决单一预测问题。工作原理是生成多个分类器/模型,各自独立地学习和做出预测,这些预测最后结合成单预测,因此优于任何一个单分类的做出预测。

### 随机森林

> 在机器学习中,随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。多个决策树来投票

### 随机森林建立多个决策树的过程

 

 

[展开全文]