一维数组只有0轴,二维有0、1轴,三维有0、1、2轴
reshape(0,1,2),shape输出(2,1,0)
CSV逗号分隔值文件
numpy的读取文件方法
unpack参数实现行列转置
transpose,T,swapaxes(1,0)方法实现行列转置
一维数组只有0轴,二维有0、1轴,三维有0、1、2轴
reshape(0,1,2),shape输出(2,1,0)
CSV逗号分隔值文件
numpy的读取文件方法
unpack参数实现行列转置
transpose,T,swapaxes(1,0)方法实现行列转置
fsfada
numpy的索引和切片
索引从0开始
2:取得连续多行,[[2,5,6]]多一个[]取得不连续的行
:,1取得单列
:,1:取得连续列
:,[]取得不连续列
取得行列交叉的内容
取得不相邻的点
Linux操作系统遵循posix。应用程序与内核的应用。
这个老师的逻辑能力和语言组织能力真的是匮乏 前言不搭后语 自己把自己绕进去了
讲的真垃圾
这课程讲的就和拿着稿子照本宣科一样
排序算法的稳定性:将原有相等键值的记录维持相对次序。
load_boston 在 1.0 中已弃用,并在 1.2 中删除
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html
scikit-learn 维护者强烈反对使用这个数据集,其中代码的目的是研究和教育数据科学和机器学习中的伦理问题替代方法。
#apply返回每个测试样本所在叶子节点的索引
clf.apply(xtext)
#predict返回每个测试样本的分类、回归结果
clf.predict(xtest)
#决策树 # from sklearn import tree#导入需要的模块 # clf=tree.DecisionTreeClassifier()#实例化 # clf=clf.fit(x_train,y_train)#用训练集数据训练模型 # result=clf.score(x_test,y_test)#导入测试集,从接口中调用需要的信息进行打分
citerion:不纯度,不纯的越低,训练集拟合越好
机器学习
Imputer, 已更新很久了
课程是旧版本, 我为新版本稍作说明
as a reminder for classmates, currently we use 'sklearn' rather than 'scikit-learn' in coding ;)
機器學習推薦書:
1. 機器學習 (西瓜書)
2. Python數據分析與挖掘實戰
3. 機器學習系統設計
4. 面向機器智能TensorFlow實戰
5. TensorFlow技術解析與實戰
少用加号
数据组织方式
一组数据如何保存 数据结构
抽象数据类型:确定数据组织形式,数据上的一组操作,只有相应的接口。
不会进行函数调用的步骤才叫做基本步骤。
算法时间复杂度:描述算法时间的多少
机器学习简介
机器学习、深度学习可以做什么?
(自然语言处理、图象识别、传统预测)
机器学习库和框架
scikit learn、TensorFlow
课程定位:
以算法、案例为驱动的学习,浅显易懂的数学知识
注意:参考书比较晦涩难懂,不建议直接读
课程目标:
熟悉机器学习各类算法的原理
掌握算法的使用,能够结合场景解决实际问题
掌握使用机器学习算法库和框架
机器学习课程
特征工程;模型、策略、优化,分类、回归和聚类,TensorFlow,神经网络,图象识别,自然语言处理