2292-刘同学-算法方向-数据挖掘-就业:是 已关闭

2292-刘同学-算法方向-数据挖掘-就业:是 扫二维码继续学习 二维码时效为半小时

(0评价)
价格: 免费

交叉验证:

交叉验证是用来验证模型稳定性的一种指标。交叉验证是用来观察模型的稳定性的一种方法,我们将数据划分为n份,依次使用其中一份作为测试集,其他n-1份 作为训练集,多次计算模型的精确性来评估模型的平均准确程度。训练集和测试集的划分会干扰模型的结果,因此用交叉验证n次的结果求出的平均值,是对模型效果的一个更好的度量。

 

[展开全文]

回归树:参数、属性和接口

criterion

回归树衡量分枝质量的指标,支持的标准有三种: 1)输入"mse"使用均方误差mean squared error(MSE),父节点和叶子节点之间的均方误差的差额将被用来作为 特征选择的标准,这种方法通过使用叶子节点的均值来最小化L2损失

2)输入“friedman_mse”使用费尔德曼均方误差,这种指标使用弗里德曼针对潜在分枝中的问题改进后的均方误差

3)输入"mae"使用绝对平均误差MAE(mean absolute error),这种指标使用叶节点的中值来最小化L1损失 属性中最重要的依然是feature_importances_,接口依然是apply, fit, predict, score最核心。

在回归树中,MSE不只是我们的分枝质量衡量指标,也是我们最常用的衡 量回归树回归质量的指标,当我们在使用交叉验证,或者其他方式获取回归树的结果时,我们往往选择均方误差作 为我们的评估(在分类树中这个指标是score代表的预测准确率)。在回归中,我们追求的是,MSE越小越好。然而,回归树的接口score返回的是R平方,并不是MSE。

y尖儿是标签的平均值。虽然均方误差永远为正,但是sklearn当中使用均方误差作为评判标准时,却是计算”负均方误 差“(neg_mean_squared_error)。这是因为sklearn在计算模型评估指标的时候,会考虑指标本身的性质,均 方误差本身是一种误差,所以被sklearn划分为模型的一种损失(loss),因此在sklearn当中,都以负数表示。真正的 均方误差MSE的数值,其实就是neg_mean_squared_error去掉负号的数字。

 

[展开全文]

目标权重参数

class_weight & min_weight_fraction_leaf

在银行要 判断“一个办了信用卡的人是否会违约”,就是是vs否(1%:99%)的比例。这种分类状况下,即便模型什么也不 做,全把结果预测成“否”,正确率也能有99%。因此我们要使用class_weight参数对样本标签进行一定的均衡,给 少量的标签更多的权重,让模型更偏向少数类,向捕获少数类的方向建模。

有了权重之后,样本量就不再是单纯地记录数目,而是受输入的权重影响了,因此这时候剪枝,就需要搭配min_ weight_fraction_leaf这个基于权重的剪枝参数来使用。另请注意,基于权重的剪枝参数(例如min_weight_ fraction_leaf)将比不知道样本权重的标准(比如min_samples_leaf)更少偏向主导类。如果样本是加权的,则使 用基于权重的预修剪标准来更容易优化树结构,这确保叶节点至少包含样本权重的总和的一小部分。

重要的属性和接口

sklearn中许多算法的接口都是相似的,比如说我们之前已经用到的fit和score,几乎对每个算法都可以使用。除了 这两个接口之外,决策树最常用的接口还有apply和predict。

如果你的数据的确只有一个特征,那必须用reshape(-1,1)来给 矩阵增维;如果你的数据只有一个特征和一个样本,使用reshape(1,-1)来给你的数据增维。

决策树模型天生对环形数据没有良好的训练效果。

第一个是月亮型数据集、第二个是环形数据集、第三个是对半分数据集。分类树天生不擅长环形数据。每个模型都有自己的决策上限,所以一个怎样调整都无法提升 表现的可能性也是有的。当一个模型怎么调整都不行的时候,我们可以选择换其他的模型使用,不要在一棵树上吊 死。顺便一说,最擅长月亮型数据的是最近邻算法,RBF支持向量机和高斯过程;最擅长环形数据的是最近邻算法和高斯过程;最擅长对半分的数据的是朴素贝叶斯,神经网络和随机森林。

 

[展开全文]

max_features & min_impurity_decrease

一般max_depth使用,用作树的”精修“

·max_features

限制分枝时考虑的特征个数,超过限制个数的特征都会被舍弃。和max_depth异曲同工,max_features是用来限制高维度数据的过拟合的剪枝参数,但其方法比较暴力,是直接限制可以使用的特征数量 而强行使决策树停下的参数,在不知道决策树中的各个特征的重要性的情况下,强行设定这个参数可能会导致模型 学习不足。如果希望通过降维的方式防止过拟合,建议使用PCA,ICA或者特征选择模块中的降维算法。

·min_impurity_decrease限制信息增益的大小,(信息增益是用父节点的信息熵-子节点的信息熵)信息增益小于设定数值的分枝不会发生。这是在0.19版本中更新的功能,在0.19版本之前时使用min_impurity_split。

剪枝参数可以通过学习曲线来找到最优参数

无论如何,剪枝参数的默认值会让树无尽地生长,这些树在某些数据集上可能非常巨大,对内存的消耗也非常巨 大。所以如果你手中的数据集非常巨大,你已经预测到无论如何你都是要剪枝的,那提前设定这些参数来控制树的 复杂性和大小会比较好。

[展开全文]

剪枝参数

在不加限制的情况下,一棵决策树会生长到衡量不纯度的指标最优,或者没有更多的特征可用为止。这样的决策树 往往会过拟合,这就是说,它会在训练集上表现很好,在测试集上却表现糟糕。

为了让决策树有更好的泛化性,我们要对决策树进行剪枝。剪枝策略对决策树的影响巨大,正确的剪枝策略是优化 决策树算法的核心。

·max_depth

限制树的最大深度,超过设定深度的树枝全部剪掉 这是用得最广泛的剪枝参数,在高维度低样本量时非常有效。决策树多生长一层,对样本量的需求会增加一倍,所 以限制树深度能够有效地限制过拟合。实际使用时,建议从=3开始尝试,看看拟合的效 果再决定是否增加设定深度。

·min_samples_leaf & min_samples_split min_samples_leaf

限定,一个节点在分枝后的每个子节点都必须包含至少min_samples_leaf个训练样本,否则分 枝就不会发生,或者,分枝会朝着满足每个子节点都包含min_samples_leaf个样本的方向去发生。

一般搭配max_depth使用,在回归树中有神奇的效果,可以让模型变得更加平滑。这个参数的数量设置得太小会引 起过拟合,设置得太大就会阻止模型学习数据。一般来说,建议从=5开始使用。

min_samples_split限定,一个节点必须要包含至少min_samples_split个训练样本,这个节点才允许被分枝,否则 分枝就不会发生。

 

[展开全文]

建一棵树

train_test_split

训练集和测试集划分每次都是随机的喔,所以实验结果每次都不同

决策树在形成时,分支的时候是通过计算每个节点的不纯度来选取节点,是通过优化每个节点来形成的,但是最优的节点不一定能形成最优的树。

每次建树的时候都是通过选取不同的特征值来形成不同的树。但是每次返回的最优的树都不同。

所以可以通过固定一个种子数来固定最优树模型。

random_state用来设置分枝中的随机模式的参数,默认None,在高维度时随机性会表现更明显,低维度的数据 (比如鸢尾花数据集),随机性几乎不会显现。输入任意整数,会一直长出同一棵树,让模型稳定下来。

splitter也是用来控制决策树中的随机选项的,有两种输入值,输入”best",决策树在分枝时虽然随机,但是还是会 优先选择更重要的特征进行分枝(重要性可以通过属性feature_importances_查看),输入“random",决策树在 分枝时会更加随机,树会因为含有更多的不必要信息而更深更大,并因这些不必要信息而降低对训练集的拟合。

加入splitter=‘random’以后会发现树变得更大更宽了,因为特征值选取更加随机了

默认是best

[展开全文]

重要参数

criterion

为了要将表格转化为一棵树,决策树需要找出最佳节点和最佳的分枝方法,对分类树来说,衡量这个“最佳”的指标 叫做“不纯度”。通常来说,不纯度越低,决策树对训练集的拟合越好。

不纯度基于节点来计算,树中的每个节点都会有一个不纯度,并且子节点的不纯度一定是低于父节点的,也就是 说,在同一棵决策树上,叶子节点的不纯度一定是最低的。

Criterion这个参数正是用来决定不纯度的计算方法的。sklearn提供了两种选择:

1)输入”entropy“,使用信息熵(Entropy) 2)输入”gini“,使用基尼系数(Gini Impurity)

当使用信息熵 时,sklearn实际计算的是基于信息熵的信息增益(Information Gain),即父节点的信息熵和子节点的信息熵之差。

比起基尼系数,信息熵对不纯度更加敏感,对不纯度的惩罚最强。但是在实际使用中,信息熵和基尼系数的效果基 本相同。信息熵的计算比基尼系数缓慢一些,因为基尼系数的计算不涉及对数。另外,因为信息熵对不纯度更加敏 感,所以信息熵作为指标时,决策树的生长会更加“精细”,因此对于高维数据或者噪音很多的数据,信息熵很容易 过拟合,基尼系数在这种情况下效果往往比较好。当模型拟合程度不足的时候,即当模型在训练集和测试集上都表 现不太好的时候,使用信息熵。当然,这些不是绝对的

 

[展开全文]

决策树

1、概述

决策树是一种非参数的有监督学习方法,它能够从一系列有特征和标签的数据中总结出决策规则,以解决分类和回归问题。

2、关键概念:节点

根节点:没有进边,有出边。包含最初的,针对特征的提问。

中间节点:既有进边也有出边,进边只有一条,出边可以有很多条。都是针对特征的提问。

叶子节点:有进边,没有出边,每个叶子节点都是一个类别标签。

子节点和父节点:在两个相连的节点中,更接近根节点的是父节点,另一个是子节点。/3、

3、决策树算法的核心是要解决两个问题:

1)如何从数据表中找出最佳节点和最佳分枝? 2)如何让决策树停止生长,防止过拟合?

4、模块sklearn.tree的使用

 

[展开全文]

什么是sklearn?

sklearn是一个开源的基于python语言的机器学习工具包,它通过numpy、scipy和matplotlib等python数值计算的库实现高效的算法应用,涵盖了几乎所有主流机器学习算法。

 

[展开全文]

时间复杂度

二分对象  有序

时间复杂度

 

 

[展开全文]

搜索

二分查找/折半查找

有序顺序表

一上来定位中间位置

取得中间元素

7位于序列的中间位置起始是坐标最前面为0

终止位置为8

1 3  4  6 7  8 10 13 14

 

[展开全文]

事件:样本点的合集

事件运算:

包含,等价,对立(逆事件)

AUB, A,B事件的并

A∩B=AB,A,B事件的交集

AB=空集, A∪B=A+B 称为和

A-B=AB(逆)

交换律A∪B=B∪A, AB=BA

结合律(A∪B)∪C=A∪(B∪C),ABC=A(BC)

分配律(A∪B)∩C=AC ∩ BC

(A∩B)∪C=(A∪C)∩(B∪C)

德摩根定理:分开反号

[展开全文]
1553_N_GX · 2021-05-27 · 自由式学习 0

数据降维

1.特征选择

2.主成分分析

 

[展开全文]

MinMaxScaler(feature_range=())

feature_range 可以指定在一定的数值范围内

[展开全文]

tf idf

tf:term frenquency词的频率 出现的次数

idf:inverse document frequency 逆文档频率

log(总文档数量/该词出现的文档数量)

 

重要性程度

 

[展开全文]

countvectorizer没有参数

文本都是放在列表里面的可迭代对象

[展开全文]

性能瓶颈,读取速度

格式不太符合机器学习要求数据的格式

 

可用数据集:

Kaggle

UCI

scikit-learn

 

 

[展开全文]

机器学习是从数据中自动分析获得规律(模型),并利用规律对未知数据进行预测

1. 解放生产力

2.解决专业问题

3.提供社会便利

[展开全文]

连续[2:5,1:4]跳跃[[2,1],[3,5]]

[展开全文]
Dino · 2021-05-09 · 自由式学习 0

SST (总方差)= SSE() + SSR (残差平方和)

只有无偏估计下成立,否则 SST≥SSE+ SSR

 

局部加权

最重要的问题: 如何度量权重

 

Logistic回归

p(y|x:θ)  y=0, y=1时,写成上述密度函数形式

 

解法1: 从mle求解

极大似然估计的梯度上升算法,本质与梯度下降无区别,梯度上升取正梯度方向,同样设置步长a;梯度下降选取负梯度方向,

线性回归:  假定服从高斯分布,通过MLE进行估计

logistics回归: 假定服从二项分布,通过MLE进行估计

如果都进行梯度下降法估计,会发现求解的方式都是一样的

 

广义线性模型的定义: 因变量不服从正态分布,且因变量与自变量不存在线性关系;广义就是要找一个非线性的关系f,使得转换后更接近因变量的分布

证明是一个广义的线性模型:

对数线性模型:

从对数模型理解 logistics函数

一方面: 从 ln(p/(1-p)) = θx 推导出 p = logistics函数,说明希望对数模型是线性的,从而推导出概率可以用logistics函数表示

另一方面: 从 p=logistics函数 + ln(p/(1-p))对数模型,推导出对数模型是线性的θTx

广义线性模型  → 相似的梯度下降方法

 

解法2: 从损失函数进行求解

(1)对 -1, 1转换为0, 1  进行(yi+1)/2...

 

softmax回归

 

 

鸢尾花数据

分为三个 二分类问题,算出三个AUCi值

micro: 直接算三个平均AUCi,得出AUC

macro: 总体加和,当作一个AUC计算

 

[展开全文]
1787_Y_xzt · 2021-05-06 · 自由式学习 0