SST (总方差)= SSE() + SSR (残差平方和)
只有无偏估计下成立,否则 SST≥SSE+ SSR
局部加权
最重要的问题: 如何度量权重
Logistic回归
p(y|x:θ) y=0, y=1时,写成上述密度函数形式
解法1: 从mle求解
极大似然估计的梯度上升算法,本质与梯度下降无区别,梯度上升取正梯度方向,同样设置步长a;梯度下降选取负梯度方向,
线性回归: 假定服从高斯分布,通过MLE进行估计
logistics回归: 假定服从二项分布,通过MLE进行估计
如果都进行梯度下降法估计,会发现求解的方式都是一样的
广义线性模型的定义: 因变量不服从正态分布,且因变量与自变量不存在线性关系;广义就是要找一个非线性的关系f,使得转换后更接近因变量的分布
证明是一个广义的线性模型:
对数线性模型:
从对数模型理解 logistics函数
一方面: 从 ln(p/(1-p)) = θx 推导出 p = logistics函数,说明希望对数模型是线性的,从而推导出概率可以用logistics函数表示
另一方面: 从 p=logistics函数 + ln(p/(1-p))对数模型,推导出对数模型是线性的θTx
广义线性模型 → 相似的梯度下降方法
解法2: 从损失函数进行求解
(1)对 -1, 1转换为0, 1 进行(yi+1)/2...
softmax回归
鸢尾花数据
分为三个 二分类问题,算出三个AUCi值
micro: 直接算三个平均AUCi,得出AUC
macro: 总体加和,当作一个AUC计算