===============章节分割线===============
【第1阶段】:数学阶段
【监督方式】:弱监督
「第1章」:数学基础
课程名称:【710】【1、高数基础---人工智能AI数学基础(完全0基础数学)】
课程内容:高数的系统知识学习,不建议从头到尾观看。浪费时间,可以通过数学加强课程中的数学知识,针对性复习。
---考核---(可选择,联系教务老师)
「第2章」:数学基础
课程名称:【709】【2、概率基础---人工智能AI数学基础(完全0基础数学)】
课程内容:概率的系统知识学习,不建议从头到尾观看。浪费时间,可以通过数学加强课程中的数学知识,针对性复习。
---考核---(可选择,联系教务老师)
「第3章」:数学基础
课程名称:【683】【3、统计基础---人工智能AI数学基础(完全0基础数学)】
课程内容:统计的系统知识学习,不建议从头到尾观看。浪费时间,可以通过数学加强课程中的数学知识,针对性复习。
---考核---(可选择,联系教务老师)
===============章节分割线===============
【第2阶段】:编程阶段
【监督方式】:强监督
「第2章」:数据结构基础
课程名称:【34】【Python数据结构与算法】
课程内容:数据结构入门,主要讲解了堆、栈、链表、快排、二分、树等数据结构与算法,课程末尾将会提供leetcode刷题教程,请需要就业的徒弟务必重视练习。
---考核---(可选择,联系教务老师)
「第3章」:数据科学库基础
课程名称:【30】【机器学习---数据科学包】
课程内容:讲解了目前主要是pandas、numpy、matpoltlib库的使用。
---考核---(可选择,联系教务老师)
「第5章」:Linux基础
课程名称:【14】【Linux】
课程内容:主要讲解了linux数据库的使用,开发人员的基本操作。如果时间充足,可以系统学习,如果想要快速进入算法,可以跳过,不影响接下来的算法学习。但是在进入项目阶段之前必须进行学习。
---考核---(可选择,联系教务老师)
===============章节分割线===============
【第3阶段】:机器学习阶段
【监督方式】:强监督
「第1章」:机器学习基础
课程名称:【3142】【机器学习算法基础(基础机器学习课程)】
课程内容:机器学习基础算法的讲解,偏向于实现,对底层原理没有进行过多的阐述。
---考核---(可选择,联系教务老师)
「第2章」:机器学习进阶
课程名称:【31】【机器学习---算法加强】
课程内容:对机器学习深入的讲解,利用了大量的数学公式进行推导,足以应对工厂面试过程中问到的算法的底层远离的实现。比较难理解,需要多次吸收强化。如对该课程有不适应,请及时跟教务老师联系。
---考核---(可选择,联系教务老师)
「第3章」:机器学习框架
课程名称:【4168】【机器学习-Sklearn课程--V2】
课程内容:机器学习中的一个框架的学习,偏向于练习。
---考核---(可选择,联系教务老师)
===============章节分割线===============
【第4阶段】:深度学习阶段
【监督方式】:强监督
「第1章」:深度学习进阶
课程名称:【9054】【深度学习-【2020版】【深版】】
课程内容:深度学习深入知识的讲解,对神经网络等深度学习常用的算法进行了讲解
---考核---(可选择,联系教务老师)
「第2章」:深度学习基础
课程名称:【2949】【1、Python人工智能项目进阶(第一部分)-深度学习进阶提高】
课程内容:深度学习常用框架知识的讲解,深层神经网络、浅层神经网络的算法、卷积神经网络算法
---考核---(可选择,联系教务老师)
「第3章」:深度学习框架
课程名称:【9458】【深度学习-Tensorflow2.0】
课程内容:深度学习中TensorFlow2.X版本的讲解与使用。
---考核---(可选择,联系教务老师)
「第4章」:深度学习框架
课程名称:【9395】【Pytorch】
课程内容:深度学习中的Pytorch框架的讲解于使用。
---考核---(可选择,联系教务老师)
===============章节分割线===============
【第5阶段】:辅助阶段
【监督方式】:强监督
「第1章」:辅助课程
课程名称:【3173】【说明课程(基础知识与项目衔接说明课程)】
课程内容:项目阶段与基础阶段的分界点,在该课程之前为基础阶段,之后为项目阶段,如需更改方向,请在该阶段在群里与老师沟通。
---考核---(可选择,联系教务老师)
===============章节分割线===============
【第6阶段】:推荐方向阶段
【监督方式】:自由
「第1章」:推荐方向前置知识阶段
课程名称:【25】【Spark---Scala课程】
课程内容:该课程主要讲解sprak框架使用的Scala语言,了解一下即可。可以快速学习,为大数据推荐系统做准备。
---考核---(可选择,联系教务老师)
该部分学生比较熟练,简单过一下即可
===============章节分割线===============
【第7阶段】:推荐方向阶段
【监督方式】:强监督
「第1章」:推荐方向算法理论阶段
课程名称:【3258】【1、大数据技术之机器学习和推荐系统-理论】
课程内容:该课程主要讲解了大数据推荐架构中常用的算法的实现和学习K近邻、逻辑回归、决策树等知识的讲解。重点学习的课程。
---考核---(可选择,联系教务老师)
「第2章」:推荐方向算法理论阶段
课程名称:【1754】【2、头条NLP推荐系统项目?】
课程内容:该课程主要讲解了文章推荐系统的整体的实现,其中通过对召回层、算法实现等的讲解,完成了整个文章推荐系统的视线,并且实现了调用。
---考核---(可选择,联系教务老师)
「第3章」:推荐方向项目实践阶段
课程名称:【3528】【3、大数据技术之机器学习和推荐系统-电商推荐系统】
课程内容:该课程主要从推荐系统的设计-实现-测试各方面进行了讲解,通过了对电商数据的分析,然后使用推荐算法对模型进行设计,然后对各个模块进行实现。
---考核---(可选择,联系教务老师)
「第4章」:推荐方向算法理论阶段
课程名称:【2644】【1、头条NLP推荐系统基础】
课程内容:该课程主要是讲解了推荐系统的架构的理论实现,以及推荐系统常见的冷启动、数据集、NLP常用的基础知识等问题,然后讲解了大数据推荐系统常用的大数据框架的知识,如Hadoop、Kafka等知识的讲解。
---考核---(可选择,联系教务老师)
「第5章」:推荐方向项目实践阶段
课程名称:【1754】【2、头条NLP推荐系统项目】
课程内容:该课程主要讲解了文章推荐系统的整体的实现,其中通过对召回层、算法实现等的讲解,完成了整个文章推荐系统的视线,并且实现了调用。
---考核---(可选择,联系教务老师)
[第6章]:NLP相关模型:transformer,attention
[第7章]:dssm+ESIM+wide&deep项目
[第8章]:DIN,DIEN模型学习
===============章节分割线===============
【第8阶段】:Kaggle练习阶段
【监督方式】:强监督
「第1章」:数据挖掘Kaggle阶段
课程名称:【2956】【3-Kaggle基于pytorch的风格转换 】
课程内容:Kaggle中对数据挖掘的项目练习。
---考核---(可选择,联系教务老师)
「第2章」:数据挖掘Kaggle阶段
课程名称:【2954】【1-Kaggle音乐推荐案例实战 】
课程内容:Kaggle中对数据挖掘的项目练习。
---考核---(可选择,联系教务老师)
「第3章」:金融数据分析Kaggle阶段
课程名称:【3045】【Kaggle金融反欺诈模型训练 】
课程内容:Kaggle中对金融风控的反欺诈模型的项目练习。
---考核---(可选择,联系教务老师)
「第4章」:金融数据分析Kaggle阶段
课程名称:【3044】【第二课---Kaggle经济金融相关问题解决 】
课程内容:Kaggle中对金融风控的反欺诈模型的项目练习。
---考核---(可选择,联系教务老师)