4、rand、rand_like、randint
rand随机生成在[0, 1]的数值
rand_like是先把rand生成的数组读取出来再喂给rand函数
randint需要给出最大值、最小值和shape
4、rand、rand_like、randint
rand随机生成在[0, 1]的数值
rand_like是先把rand生成的数组读取出来再喂给rand函数
randint需要给出最大值、最小值和shape
创建tensor
(1)从numpy进行导入
(2)从list里面导入
小写的tensor括号里接收的是现有数据,而大写Terson、FloatTensor里面接受的是形状,也可以接受现成的数据,括号里用中括号时表示现成的数据,括号时输入的形状
Dim1
一般会用在bias、线性层的输入
Dim2
一般用在batch,当输入多张图片时,第一个数字是图片的个数,第二个是打平图片之后的一维点数
Dim3
适合RNN的文字处理
Dim4
适合CNN
第一个数字是图片的个数,第二个数字是图片的通道,通道为1是灰色图像,通道为3的是菜色图像,后两位数字28*28是minis数据集的长和宽
pytorch中的数据类型
没有对string的支持内键
how to denote string
(1)One-hot并不体现语义
(2)Embedding—word2vec
核实数据类型
数据类型
(1)标量
回归问题实战
(1)先计算总损失值
(2)然后计算w和b的偏导,进而更新梯度值
需要四步:
(1)load data
(2)build model
(3)train
(4)test
Non-linear Factor
加入激活函数之后
pred既有线性表达能力,还有非线性的表达能力
pytorch的功能:
(1)CPU加速;
没有显卡,用不了cuda
(2)自动求导*非常重要,因为深度学习本质上就是在利用梯度下降法来求最优解;
(3)常用网络层
静态图:
define——>run
在最开始就需要定义好公式,给定输入值,得到输出值,而且在运行的过程中无法进行调整
动态图:
可以随时调整公式
linear Regression——我们要估计连续函数的值;
logistic Regression——在上述linear regression的基础上增加了一个激活函数,把y的空间压缩到0-1的范围,0-1可以表示一个概率
classification——所有的可能性概率之和为1
数据降维
1.特征选择
2.主成分分析
MinMaxScaler(feature_range=())
feature_range 可以指定在一定的数值范围内
tf idf
tf:term frenquency词的频率 出现的次数
idf:inverse document frequency 逆文档频率
log(总文档数量/该词出现的文档数量)
重要性程度
countvectorizer没有参数
文本都是放在列表里面的可迭代对象
性能瓶颈,读取速度
格式不太符合机器学习要求数据的格式
可用数据集:
Kaggle
UCI
scikit-learn
机器学习是从数据中自动分析获得规律(模型),并利用规律对未知数据进行预测
1. 解放生产力
2.解决专业问题
3.提供社会便利
梯度下降法
误差来源于两个——一个是bias,还有一个是variance。出现bias是由于开始就没有瞄准靶心;出现vaiance是由于瞄准了靶心,但是发射的时候出现了偏离。我们的目标是低bias和低variance。
红色的部分是分别在考虑输入值一次方、三次方和五次方函数进行5000次实验的结果,蓝色的线条是将5000次实验结果进行平均即结果
越简单的模型,bias越大,variance比较小;反之,模型越复杂,variance越大,但是平均值却比较接近于期望值
bias较大的情况,问题出现在underfitting;
variance较大的情况,问题出现在overfitting
Diagnosis:
(1)当模型不能拟合训练集时,我们有较大的bias;
(2)当模型可以集合训练集,但是在测试集上出现了较大的损失值,则很大可能上有较大的variance
for bias, redesign模型:
(1)add more feature as input
(2)a more complex model
for variance
(1)more data(增加每次实验的样本量)
(2)Regularization我们希望曲线越平缓越好
伤害:只包含了比较平滑的曲线,在取值上产生了较大的bias
model selection:
我们想要找到尽可能小的bias和variance来得到最小的损失值
Regression回归
1、应用场景
(1)Stock Market Forecast
(2)Self-driving Car
(3)Recommendation
2、步骤
(1)给一个Model
(2)Goodness of Function(函数优度)
输入:a function一个函数
输出:loss funchtion——how bad it is
Pick the “Best”Function
(3)Gradient Descent
梯度下降:初试化w和b这两个参数,不断迭代更新,知道找到最优解,也就是使损失值达到最小的参数值
在线性回归里,是不需要担心找不到全局最优解的,因为其三维图形是一圈一圈的等高线,不管从哪个方向都可以找到最优解
how's the results?
训练的目的是损失值最小,但是通过训练集得到的损失值是比测试集得到的损失值小的,为了减少误差,我们需要改进模型——引入了二次方、三侧方和四次方的函数
overfitting——更复杂的模型会得到更不好的结果,所以模型并不是越复杂越好。
what are the hidden factors——pokemon的物种会影响他们值
根据不同的输入值,对不同的物种设置不同 的权重,此时仅设置了输入值的一次方,还可以考虑输入值的二次方函数
产生了过拟合的结果
设置较为平缓的曲线,由于w的值大于零小于1,当其越接近于0,结果是越为平缓的,前面的系数越大,代表我们越考虑smooth,越可以较多得关注参数w本身的值