3394-池生-Python学科-Python数据分析 扫二维码继续学习 二维码时效为半小时

(0评价)
价格: 免费

数据分析的介绍

  1. 为什么学习数据分析:Python数据科学的基础与机器学习课程的基础。
  2. 数据分析师用适当的方法对手机的大量数据进行分析,帮助人们做出判断,以便采取适当行动。
  3. 数据分析流程:提出问题、准备数据(数据清洗或预处理)、分析数据、获得结论、成果可视化。
[展开全文]
荦荦 · 2022-10-15 · 自由式学习 0

切片和索引

1.选择行 t【2】

2.选择列t【3:,:】

3.选择行列 连续的多行 t[2:,:3]

4.索引 t【2,3】

[展开全文]
3233小风 · 2022-10-15 · 自由式学习 0

### numpy中的nan和inf

1.当本地文件为float的时候,有缺失时,会出现nan

或者做义工不适合的计算时

2.inf表示正无穷,-inf是负无穷

### numpy常用统计函数

1.求和:np.sum(t3,axis=0)是计算行上的结果

(axis=1是计算列上的结果)

2.均值:np.mean(t,axis=0)

3.中值:np.median(t3,axis=0)

4.最大值:np.max(axis=0)

5.最小值:np.min(axis=0)

6.极值:np.ptp(t3,axis=0)

7.标准差:np.std(axis=0)

标准差反应数据的波动情况,越大则越分散

 

[展开全文]
3233小风 · 2022-10-07 · 自由式学习 0

## numpy好用的方法

1.获得最大值最小值的位置

  np.argmax(t,axis=0)

  np.argmin(t.axis=1)

2.创建一个全为0的数组:np.zeros((3,4))

3.创建一个全为1的数组:np.ones((3,4))

4.创建一个对角线为1的正方形数组(方阵):

np,eye(3)

## numpy生成随机数

 

[展开全文]
3233小风 · 2022-09-18 · 自由式学习 0

##数组的拼接

#竖直拼接

np.vstack((t1,t2))

#水平拼接

np.hstack((t1,t2))

#行交换

t[[1,2],:]=t[[2,1],:]

#列交换

t[:,[0,2]]=t[:,[2,0]]

[展开全文]
3233小风 · 2022-09-18 · 自由式学习 0

np.where(t<10,0,10)#numpy三元运算符

如果t<10,则为0,否则为10

np.clip(10,18)#numpy的裁剪

 

[展开全文]
3233小风 · 2022-09-18 · 自由式学习 0

seek( )

如果在操作文件的过程,需要定位到其他位置进行操作,用seek( )

seek(offset,form)有2个参数,offset,偏移量单位字节,负数是往回偏移,正数是往前偏移,form位置:0表示文件开头,1表示当前位置,2表示文件末尾

[展开全文]

## numpy读取本地数据

numpy读取数据

np.loadtxt(fname,dtype=np.float,delimiter=None,skiprows=0,usecols=None,unpack=False)

[展开全文]
3233小风 · 2022-09-06 · 自由式学习 0