3379-蔡郑星-人工智能学科-推荐系统方向(任燕)(半年)(remi)()(转) 扫二维码继续学习 二维码时效为半小时

(0评价)
价格: 免费

#### 条形图

plt.bar 竖着的条形图,线条粗细是width(线条的宽度)

plt.barh 横着的条形图,线条粗细成了height(线条的高低)

plt.grid 是添加网格,alpha是透明度

[展开全文]
3233小风 · 2022-09-01 · 自由式学习 0

#### 散点图是plt.scatter

遗忘知识点:

plt.legend(loc="uppper left",prop=my_font)

[展开全文]
3233小风 · 2022-08-31 · 自由式学习 0

###

plt.grid绘制网格

plt.grid(alpha=0.5)#alpha这个代表透明度

plt.plot(linestyle=':')表示折线变成虚线

color=''#线条颜色

linestyle=''#折线的形式

linewidth=5#线条粗细

alpha=0.5#透明度

以上都是放在plt.plot中的

[展开全文]
3233小风 · 2022-08-31 · 自由式学习 0

# 函数rotation=90旋转的度数

[展开全文]
3233小风 · 2022-08-30 · 自由式学习 0

###调整x或者y轴上的参数

1.from matplotlib import pyplot as plt引入函数

2.plt.figure(figsize=(20,8),dpi=80)

#figurezide图片大小,(长,宽),dpi越大越不容易失真

 

 

from matplotlib import pyplot as plt

x=range(2,26,2)
y=[15,13,14,5,17,20,25,26,26,27,22,18,15]

#设置图片大小
#figurezide图片大小,(长,宽),dpi越大越不容易失真
plt.figure(figside=(20,8),dpi=80)

#绘图
plt.plot(x,y)

#设置x轴
_xtick_labels=[i/2 for i in range(2,49)]
plt.xticks(_xtick_labels[::3])

#保存

#plt.savefig("./t1.png")
#展示
plt.show()
[展开全文]
3233小风 · 2022-08-30 · 自由式学习 0

选择行,

选择列

选择行列

 

[展开全文]

hist 直方图

from matplotlib import pyplot as plt

from matplotlib import font_manager

a=[zifuchuan]

plot.hist(a.fenzushu)

细节

计算组数=num_bin= (max(a)-nim(b)//d)

d=5

组数= 极差/组距

x轴的刻度设置

plt.xticks(range(min(a),max(a)+d,d))

plt.show()

图形大小:plt.figure(figsze=(20,8),dpi=80)

{数据}

 

 

 

[展开全文]

数组的形状

shape即可查看数组的各个维度长度(输出按三维二维依次降低,块、行、个)

reshape方法可以重新设置行列,是有返回值的,而不改变本身

有返回值才会输出

结合shape和reshape可以做到在不清楚维度长度的情况下降维

flatten可以将数组展开变成一维

 

数组的计算

numpy数组对数字进行+*-/计算,是对全部单元进行计算

nan>>not a number 0/0

inf>>infinite x/0

数组对数组进行计算:

不同维度的数组进行计算至少有一个维度的长度相同

广播会在缺失或者长度为1的维度上进行(不同维度的计算本质上是广播)

广播原则:如果两个数组的后缘维度,即从末尾开始算起的维度轴长相符,或者某一方的长度为1,即广播jian'r

[展开全文]
Flying_X · 2022-05-22 · 自由式学习 0

一维数组只有0轴,二维有0、1轴,三维有0、1、2轴

reshape(0,1,2),shape输出(2,1,0)

CSV逗号分隔值文件

numpy的读取文件方法

unpack参数实现行列转置

transpose,T,swapaxes(1,0)方法实现行列转置

[展开全文]
Flying_X · 2022-05-22 · 自由式学习 0

numpy的索引和切片

索引从0开始

2:取得连续多行,[[2,5,6]]多一个[]取得不连续的行

:,1取得单列

:,1:取得连续列

:,[]取得不连续列

取得行列交叉的内容

取得不相邻的点

[展开全文]
Flying_X · 2022-05-15 · 自由式学习 0

这个老师的逻辑能力和语言组织能力真的是匮乏 前言不搭后语 自己把自己绕进去了

[展开全文]

这课程讲的就和拿着稿子照本宣科一样

[展开全文]

数据预处理

深度学习需要的是标准的正方形图片

(1)image resize

(2)Data Argumentation

(3)Normalize

(4)to tensor

 

[展开全文]

自定义数据集实战

test数据量太小的话,测试结果波动较大,所以我们为了保证测试的效果,会把测试集的数据多分配一些

1、load data ——比较重要的模型;

继承一个通用的母类

inherit from torch.utils.data.Dataset

要定一个两个函数

_len_:数据量

_getitiem_:能够得到指定的样本

2、build model——在我们已经定义好的模型上做一些修改;

3、train and test

4、transfer learning

 

[展开全文]

情感分类实战

Google CoLab

(1)continuous 12 hours;

(2)free K80 for GPU;

(3)不需要爬墙

 

[展开全文]

LSTM使用方法

LSTMcell更为灵活的使用方法,可以自定义喂数据的方式

[展开全文]

2、输入门

it作为一个开度,将多少信息传入到下一个时间点,有算法决定这个开度;新信息同样也是由ht-1和当前点的xt共同决定的。it是对当前信息的过滤系数,当前信息与开度相乘之后就是经过过滤后输入下一个点的新信息。

输入门的值

ct是memory,ht是隐藏层的输出

3、输出值

同样是由开度和ct共同决定的,ot作为开度也是由算法决定的

LSTM如何解决梯度离散的问题呢?

由于存在忘记门、输入门和输出门三个门

当前隐藏层对前一个隐藏层求导时,出现三个值相加的情况,不容易出现都是大或都是小的情况,数值相对可靠,所以效果相对来说更好一些。

[展开全文]