3379-蔡郑星-人工智能学科-推荐系统方向(任燕)(半年)(remi)()(转) 扫二维码继续学习 二维码时效为半小时

(0评价)
价格: 免费

【3379】【蔡郑星】

【个人情况】:本科是河海大学工程力学方向,2017年至今都是做的网络安全相关的工作,目前非全日制研究生在读,针对毕业论文,方向为音乐推荐系统。主体方向针对用户行为,用户评论及音乐信息数据等进行基于偏好,兴趣等推荐;开题时间:2022年7月,中期答辩时间:2023年1月,毕业论文完成:2023年4月。学会使用numpy,pandas做特征工程,学习现有的推荐算法论文,代码及项目,针对学生需求沟通创新点,完成论文。

【学习目标】:音乐推荐系统,硕士毕业论文。

【备注】:试学

【学习方向】:推荐算法 

【是否需要就业】:是

【课程学习顺序】:以老师发的学习思路为主

(按照顺序学习即可,有问题随时跟老师联系调整)

【学员课程安排】:有任何疑问,在群里随时艾特或者ding教务老师和电话测评的老师!尽快解决,达到当前阶段没有疑问为止。

 

===============章节分割线===============

【第1阶段】:python阶段

【监督方式】:强监督

「第1章」:编程语言篇

课程名称:【14281】【机器学习-数据科学库(HM)「解锁式学习」】

课程内容:讲解了目前主要是pandas、numpy、 matpoltlib库的使用。

                    ---考核---(可选择,联系教务老师)

「第2章」:编程语言篇

课程名称:【19638】【数据分析-项目合集「自由式学习」】

课程内容:该课程主要讲解了股票分析案例、人口数据分析案例、美国大选案例、用户数据分析案例四个例子来加深数据分析的例子

                    ---考核---(可选择,联系教务老师)

 

 

===============章节分割线===============

【第2阶段】:深度学习阶段

「第1章」:深度学习基础篇

课程名称:【23455】【深度学习-【2020版】【深版】「推荐系统-解锁式学习」】

课程内容:深度学习深入知识的讲解,对神经网络等深度学习常用的算法进行了讲解

                    ---考核---(可选择,联系教务老师)

「第2章」:深度学习工具篇

课程名称:【3267】【TensorFlow深度学习(第二版更新TF)-2「解锁式学习」】

课程内容:深度学习中的TensorFlow框架的讲解于使用。

                    ---考核---(可选择,联系教务老师)

「第3章」:深度学习工具篇

课程名称:【9555】【Pytorch学习「解锁式学习」】

课程内容:深度学习中的Pytorch框架的讲解于使用。

                    ---考核---(可选择,联系教务老师)

「第4章」:NLP理论进阶篇

课程名称:【27795】【NLP实战高手课「自由式学习 」】

课程内容:该课程主要讲解NLP的基本任务和研究方向、智能问答系统、文本校验系统、深度学习框架GPU、AI部署、神经网络基础(RNN,CNN,Embedding、Pytorch基础)、文本分类实践、半自动特征构建方式、降纬方法、集成模型、神经网络建模、Transformer、时序建模、xDeepFM、图网络、模型融合、深度迁移学习模型、优化器、训练语言模型、长文本分类、依存分析、Tranx、ASDL和AST、wikiSQL、Q-learning、AutoML、算法结合、多模态表示学习、知识蒸馏、K8S部署等等自然语言处理知识

                    ---考核---(可选择,联系教务老师)

「第5章」:NLP理论进阶篇

课程名称:【3024】【3、NLP人工智能(第三部分)---深度学习Bert进阶「解锁式学习」】

课程内容:深度学习中的文本匹配以及语料库的匹配等自然语言处理结合的课程。

                    ---考核---(可选择,联系教务老师)

 「第6章」:NLP项目篇

课程名称:【30328】【2、自然语言处理-基于Seq2Seq、Transformer、BERT的词向量「自由式学习」】

课程内容:该课程主要实现了NLP的一个整体的项目,讲解了项目导论与中文词向量实践、基于Seq2Seq架构的模型搭建、NLG过程的优化与项目的inference、OOV和Word-repetition问题的改进、基于Transformer特征提取器的改进、BERT在抽取任务中的效果、预训练模型在摘要任务中的改进、项目总结与回顾等知识点

                    ---考核---(可选择,联系教务老师)

「第7章」:NLP项目篇

课程名称:【30439】【4、(2022)Transformer和预训练模型阶段「自由式学习」】

课程内容:该课程主要讲解了自注意力机制以及Transformer、Teansformer的代码实现、基于Transformer的闲聊引擎、BERT中的Fine-tuning实例讲解、XLNet、ALBERT的应用、以及XLNet论文讲解。

                    ---考核---(可选择,联系教务老师)

 

===============章节分割线===============

【第3阶段】:推荐系统阶段

【监督方式】:强监督

「第1章」:推荐算法原理篇

课程名称:【推荐架构与协同(第二周)】

                    ---考核---(可选择,联系教务老师)

「第2章」:推荐算法原理篇

第一节:课程名称【wide&deep】【deepFM】论文讲解与复现

第二节:课程名称【DSSM  文本匹配】

第三节:课程名称【深度学习推荐模型】DIN模型 —— 阿里巴巴推荐领域开创性论文,引入注意力机制的深度学习网络,导读

第四节:课程名称【深度学习推荐算法】DIEN模型 —— 阿里巴巴DIN模型的进化版 论文导读+保姆级讲解

                    ---考核---(可选择,联系教务老师)

「第3章」:推荐系统项目实践篇

课程名称:【28566】【推荐系统-电影推荐系统「自由式学习」】

课程内容:该课程主要讲解了推荐系统的简介、IMDB评分、基于内容推荐、协同过滤算法、criteo ctr、FM&FFM、WIDE&Depp、DeepFM等知识点

                    ---考核---(可选择,联系教务老师)

「第4章」:推荐及广告召回算法原理篇

课程名称:【深度match(第六周)】

课程名称:【热点文章实时找回(第十二周)】

                    ---考核---(可选择,联系教务老师)

「第5章」:推荐及广告排序算法原理篇                   

课程名称:【ctr预估(第七周)】

                    ---考核---(可选择,联系教务老师)

「第6章」:推荐系统项目实践篇

课程名称:【1811】【2、头条NLP推荐系统项目「解锁式学习」】

课程内容:该课程主要讲解了文章推荐系统的整体的实现,其中通过对召回层、算法实现等的讲解,完成了整个文章推荐系统的视线,并且实现了调用。

                    ---考核---(可选择,联系教务老师)

「第7章」:推荐系统项目实践篇

课程名称:【3335】【2、大数据技术之机器学习和推荐系统-电影推荐项目「解锁式学习」】

课程内容:该课程主要从推荐系统的设计-实现-测试各方面进行了讲解,通过了对电影数据的分析,然后使用推荐算法对模型进行设计,然后对各个模块进行实现,并且进行测试。

                    ---考核---(可选择,联系教务老师)

「第8章」:推荐系统项目实践篇

课程名称:【3636】【3、大数据技术之机器学习和推荐系统-电商推荐系统「解锁式学习」】

课程内容:该课程主要从推荐系统的设计-实现-测试各方面进行了讲解,通过了对电商数据的分析,然后使用推荐算法对模型进行设计,然后对各个模块进行实现。

                    ---考核---(可选择,联系教务老师)

「第9章」:推荐系统基础理论篇

课程名称:【2704】【1、头条NLP推荐系统基础「解锁式学习」】

课程内容:该课程主要是讲解了推荐系统的架构的理论实现,以及推荐系统常见的冷启动、数据集、NLP常用的基础知识等问题,然后讲解了大数据推荐系统常用的大数据框架的知识,如Hadoop、Kafka等知识的讲解。

                    ---考核---(可选择,联系教务老师)                   

 

 

===============章节分割线===============

【第4阶段】:AI项目合集阶段

【监督方式】:强监督

「第1章」:机器学习练习系列篇

课程名称:【3020】【机器学习-音乐推荐案例实战(1,2)「自由式学习」】

课程内容:Kaggle中对数据挖掘的项目练习。

                    ---考核---(可选择,联系教务老师)

「第2章」:机器学习练习系列篇

课程名称:【19631】【4、机器学习练习-决策树、随机森林-用于流失预测「解锁式学习」】

课程内容:该课程主要是机器学习算法上面的练习

                    ---考核---(可选择,联系教务老师)

「第3章」:机器学习练习系列篇

课程名称:【13866】【机器学习-电商点击率预估(7,8)「解锁式学习」】

课程内容:等待介绍文本

                    ---考核---(可选择,联系教务老师)

「第4章」:机器学习练习系列篇

课程名称:【30177】【二分类案例_银行客户流失「解锁式学习」】

课程内容:该课程主要讲解了通过Tensorflow2.0实现二分类案例银行流失预测

                    ---考核---(可选择,联系教务老师)

 

【时间安排】:

学员可以自主安排学习时间。具体的时间可以灵活调整。

【相关规定】:

(1)每天完成今日学习任务,提交相应的csdn或者是有道云笔记之类的链接到每日作业中。老师会进行审核,每个阶段结束,进行阶段测评,测评通过,提交老师发布的通过截图到下一个课程的第一节的阶段卡点之后,方可进行下一章内容的学习。

(2)每个章节结束,如果觉得吸收比较乱,知识点多,可以进行xmind脑图的构造一下整体的思路!

(3)项目阶段,需要录制或者文档落地针对做过的项目的自述!

(4)每天必须按计划完成任务,临时有事需在日报中说明情况即可,长期请假请联系教务老师。

(5)考核不通过需要缴费补考,50元是第一次,每次增加50元,200元封顶(此项如有疑问,可以联系教务老师进行更改)。

【参考博客】:第二天早晨八点半,会有拜师晨报提醒。当中有学生优秀博客,可以查看学生的排版

【监督相关说明】:

弱监督:不需要每天提交作业,直接可以解锁课程,适合于自制力能力强的。

强监督:需要学习完一个课程通过管理员解锁才能继续学习下一个阶段,适合于自制力不够强,已经参加工作的学员。

【工作安排】:

(1)、批改作业,环境安装!还有学习过程中有不会的问题的话,艾特软件安装以及基础答疑老师!

(2)、学习过程中如果有什么问题和疑问,可以艾特答疑老师!

(3)、如果计划需要更改,可以群里艾特我和跟你电话测评沟通的老师进行沟通!

(4)、如果有什么方向上面的疑问,可以艾特相关的答疑老师和计划制定的老师!

(5)、如果不知道找哪位老师的话,或者问题比较紧急的可以艾特教务老师进行处理,或者有什么意见和建议(直接私聊教务老师)!教务老师会进行受理!