3333-小刀-人工智能-数据挖掘 扫二维码继续学习 二维码时效为半小时

(0评价)
价格: 免费

Bonus:Bagging的另一个必要条件

有另一个必要条件:基分类器的判断准 确率至少要超过随机分类器,即基分类器的判断准确率至少要超过50%。

可以从图像上看出,当基分类器的误差率小于0.5,即准确率大于0.5时,集成的效果是比基分类器要好的。相反, 当基分类器的误差率大于0.5,袋装的集成算法就失效了。所以在使用随机森林之前,一定要检查,用来组成随机 森林的分类树们是否都有至少50%的预测正确率。率至少要超过50%。

[展开全文]

随机森林的本质是一种装袋集成算法(bagging),装袋集成算法是对基评估器的预测结果进行平均或用多数表决 原则来决定集成评估器的结果。在刚才的红酒例子中,我们建立了25棵树,对任何一个样本而言,平均或多数表决 原则下,当且仅当有13棵以上的树判断错误的时候,随机森林才会判断错误。单独一棵决策树对红酒数据集的分类 准确率在0.85上下浮动,假设一棵树判断错误的可能性为0.2(ε)。所以,当一共有25棵树时,判断错误的可能性为:

可见,判断错误的几率非常小,这让随机森林在红酒数据集上的表现远远好于单棵决策树。

随机森林中其实也有random_state,用法和分类树中相似,只不过在分类树中,一个random_state只控制生成一 棵树,而随机森林中的random_state控制的是生成森林的模式,而非让一个森林中只有一棵树。

当random_state固定时,随机森林中生成是一组固定的树,但每棵树依然是不一致的,这是 用”随机挑选特征进行分枝“的方法得到的随机性。并且我们可以证明,当这种随机性越大的时候,袋装法的效果一 般会越来越好。用袋装法集成时,基分类器应当是相互独立的,是不相同的。

bootstrap & oob_score

要让基分类器尽量都不一样,一种很容易理解的方法是使用不同的训练集来进行训练,而袋装法正是通过有放回的随机抽样技术来形成不同的训练数据,bootstrap就是用来控制抽样技术的参数。

一般来说,自助集大约平均会包含63%的原始数据。因为每一个样本被抽到某个自助集中的概率为:

当n足够大时,这个概率收敛于1-(1/e),约等于0.632。因此,会有约37%的训练数据被浪费掉,没有参与建模, 这些数据被称为袋外数据(out of bag data,简写为oob)。

 也就是说,在使用随机森林时,我们可以不划分测试集和训练集,只需要用袋外 数据来测试我们的模型即可。

重要属性和接口

 

[展开全文]

控制基评估器

单个决策树的准确率越高,随机森林的准确率也会越高,因为装袋法是依赖于平均值或 者少数服从多数原则来决定集成的结果的。

n_estimators

n_estimators越 大,模型的效果往往越好。但是相应的,任何模型都有决策边界,n_estimators达到一定的程度之后,随机森林的 精确性往往不在上升或开始波动,并且,n_estimators越大,需要的计算量和内存也越大,训练的时间也会越来越 长。对于这个参数,我们是渴望在训练难度和模型效果之间取得平衡。

n_estimators的默认值在现有版本的sklearn中是10,但是在即将更新的0.22版本中,这个默认值会被修正为 100。这个修正显示出了使用者的调参倾向:要更大的n_estimators。

实操:建一片森林

 

[展开全文]

随机森林

集成算法概述

集成学习(ensemble learning)是时下非常流行的机器学习算法,它本身不是一个单独的机器学习算法,而是通 过在数据上构建多个模型,集成所有模型的建模结果。基本上所有的机器学习领域都可以看到集成学习的身影,在 现实中集成学习也有相当大的作用,它可以用来做市场营销模拟的建模,统计客户来源,保留和流失,也可用来预 测疾病的风险和病患者的易感性。在现在的各种算法竞赛中,随机森林,梯度提升树(GBDT),Xgboost等集成 算法的身影也随处可见,可见其效果之好,应用之广。

多个模型集成成为的模型叫做集成评估器(ensemble estimator),组成集成评估器的每个模型都叫做基评估器 (base estimator)。通常来说,有三类集成算法:装袋法(Bagging),提升法(Boosting)和stacking。

装袋法的核心思想是构建多个相互独立的评估器,然后对其预测进行平均或多数表决原则来决定集成评估器的结 果。装袋法的代表模型就是随机森林。

提升法中,基评估器是相关的,是按顺序一一构建的。其核心思想是结合弱评估器的力量一次次对难以评估的样本 进行预测,从而构成一个强评估器。提升法的代表模型有Adaboost和梯度提升树。

 

[展开全文]

网格搜索是有弊端的,它只能按照列出来的参数进行搜索匹配最佳组合,但是不能舍弃参数。所以到底把什么内容放在网格搜索的参数里是值得揣摩思考的。

[展开全文]

网格搜索:能够帮助我们同时调整多个参数的技术——枚举技术

 

[展开全文]

实例:一维回归的图像绘制

可以看出来,max_deepth=2的效果优于max_deepth=5的效果

[展开全文]

字符串驻留机制和字符串比较

字符串驻留:仅保存一份相同且不可变字符串的方法,不同的值被存放在字符串驻留池中。对于符合标识符规则的字符串(仅包含下划线_、字母和数字),python支持字符串驻留机制。(放屁,pycharm中都驻留)

字符串比较

[展开全文]

交叉验证:

交叉验证是用来验证模型稳定性的一种指标。交叉验证是用来观察模型的稳定性的一种方法,我们将数据划分为n份,依次使用其中一份作为测试集,其他n-1份 作为训练集,多次计算模型的精确性来评估模型的平均准确程度。训练集和测试集的划分会干扰模型的结果,因此用交叉验证n次的结果求出的平均值,是对模型效果的一个更好的度量。

 

[展开全文]

split()分割和join()合并

split()可以基于指定分隔符将字符串分隔为多个子字符串,如果不指定分隔符,则默认使用空白字符。

join()用于将一系列子字符串拼接

[展开全文]

回归树:参数、属性和接口

criterion

回归树衡量分枝质量的指标,支持的标准有三种: 1)输入"mse"使用均方误差mean squared error(MSE),父节点和叶子节点之间的均方误差的差额将被用来作为 特征选择的标准,这种方法通过使用叶子节点的均值来最小化L2损失

2)输入“friedman_mse”使用费尔德曼均方误差,这种指标使用弗里德曼针对潜在分枝中的问题改进后的均方误差

3)输入"mae"使用绝对平均误差MAE(mean absolute error),这种指标使用叶节点的中值来最小化L1损失 属性中最重要的依然是feature_importances_,接口依然是apply, fit, predict, score最核心。

在回归树中,MSE不只是我们的分枝质量衡量指标,也是我们最常用的衡 量回归树回归质量的指标,当我们在使用交叉验证,或者其他方式获取回归树的结果时,我们往往选择均方误差作 为我们的评估(在分类树中这个指标是score代表的预测准确率)。在回归中,我们追求的是,MSE越小越好。然而,回归树的接口score返回的是R平方,并不是MSE。

y尖儿是标签的平均值。虽然均方误差永远为正,但是sklearn当中使用均方误差作为评判标准时,却是计算”负均方误 差“(neg_mean_squared_error)。这是因为sklearn在计算模型评估指标的时候,会考虑指标本身的性质,均 方误差本身是一种误差,所以被sklearn划分为模型的一种损失(loss),因此在sklearn当中,都以负数表示。真正的 均方误差MSE的数值,其实就是neg_mean_squared_error去掉负号的数字。

 

[展开全文]

(1)字符串切片slice操作:截取字符串

  标准格式为:[起始偏移量:终止偏移量:步长]包头不包尾

[:]提取整个字符串

[展开全文]

目标权重参数

class_weight & min_weight_fraction_leaf

在银行要 判断“一个办了信用卡的人是否会违约”,就是是vs否(1%:99%)的比例。这种分类状况下,即便模型什么也不 做,全把结果预测成“否”,正确率也能有99%。因此我们要使用class_weight参数对样本标签进行一定的均衡,给 少量的标签更多的权重,让模型更偏向少数类,向捕获少数类的方向建模。

有了权重之后,样本量就不再是单纯地记录数目,而是受输入的权重影响了,因此这时候剪枝,就需要搭配min_ weight_fraction_leaf这个基于权重的剪枝参数来使用。另请注意,基于权重的剪枝参数(例如min_weight_ fraction_leaf)将比不知道样本权重的标准(比如min_samples_leaf)更少偏向主导类。如果样本是加权的,则使 用基于权重的预修剪标准来更容易优化树结构,这确保叶节点至少包含样本权重的总和的一小部分。

重要的属性和接口

sklearn中许多算法的接口都是相似的,比如说我们之前已经用到的fit和score,几乎对每个算法都可以使用。除了 这两个接口之外,决策树最常用的接口还有apply和predict。

如果你的数据的确只有一个特征,那必须用reshape(-1,1)来给 矩阵增维;如果你的数据只有一个特征和一个样本,使用reshape(1,-1)来给你的数据增维。

决策树模型天生对环形数据没有良好的训练效果。

第一个是月亮型数据集、第二个是环形数据集、第三个是对半分数据集。分类树天生不擅长环形数据。每个模型都有自己的决策上限,所以一个怎样调整都无法提升 表现的可能性也是有的。当一个模型怎么调整都不行的时候,我们可以选择换其他的模型使用,不要在一棵树上吊 死。顺便一说,最擅长月亮型数据的是最近邻算法,RBF支持向量机和高斯过程;最擅长环形数据的是最近邻算法和高斯过程;最擅长对半分的数据的是朴素贝叶斯,神经网络和随机森林。

 

[展开全文]

max_features & min_impurity_decrease

一般max_depth使用,用作树的”精修“

·max_features

限制分枝时考虑的特征个数,超过限制个数的特征都会被舍弃。和max_depth异曲同工,max_features是用来限制高维度数据的过拟合的剪枝参数,但其方法比较暴力,是直接限制可以使用的特征数量 而强行使决策树停下的参数,在不知道决策树中的各个特征的重要性的情况下,强行设定这个参数可能会导致模型 学习不足。如果希望通过降维的方式防止过拟合,建议使用PCA,ICA或者特征选择模块中的降维算法。

·min_impurity_decrease限制信息增益的大小,(信息增益是用父节点的信息熵-子节点的信息熵)信息增益小于设定数值的分枝不会发生。这是在0.19版本中更新的功能,在0.19版本之前时使用min_impurity_split。

剪枝参数可以通过学习曲线来找到最优参数

无论如何,剪枝参数的默认值会让树无尽地生长,这些树在某些数据集上可能非常巨大,对内存的消耗也非常巨 大。所以如果你手中的数据集非常巨大,你已经预测到无论如何你都是要剪枝的,那提前设定这些参数来控制树的 复杂性和大小会比较好。

[展开全文]

剪枝参数

在不加限制的情况下,一棵决策树会生长到衡量不纯度的指标最优,或者没有更多的特征可用为止。这样的决策树 往往会过拟合,这就是说,它会在训练集上表现很好,在测试集上却表现糟糕。

为了让决策树有更好的泛化性,我们要对决策树进行剪枝。剪枝策略对决策树的影响巨大,正确的剪枝策略是优化 决策树算法的核心。

·max_depth

限制树的最大深度,超过设定深度的树枝全部剪掉 这是用得最广泛的剪枝参数,在高维度低样本量时非常有效。决策树多生长一层,对样本量的需求会增加一倍,所 以限制树深度能够有效地限制过拟合。实际使用时,建议从=3开始尝试,看看拟合的效 果再决定是否增加设定深度。

·min_samples_leaf & min_samples_split min_samples_leaf

限定,一个节点在分枝后的每个子节点都必须包含至少min_samples_leaf个训练样本,否则分 枝就不会发生,或者,分枝会朝着满足每个子节点都包含min_samples_leaf个样本的方向去发生。

一般搭配max_depth使用,在回归树中有神奇的效果,可以让模型变得更加平滑。这个参数的数量设置得太小会引 起过拟合,设置得太大就会阻止模型学习数据。一般来说,建议从=5开始使用。

min_samples_split限定,一个节点必须要包含至少min_samples_split个训练样本,这个节点才允许被分枝,否则 分枝就不会发生。

 

[展开全文]

建一棵树

train_test_split

训练集和测试集划分每次都是随机的喔,所以实验结果每次都不同

决策树在形成时,分支的时候是通过计算每个节点的不纯度来选取节点,是通过优化每个节点来形成的,但是最优的节点不一定能形成最优的树。

每次建树的时候都是通过选取不同的特征值来形成不同的树。但是每次返回的最优的树都不同。

所以可以通过固定一个种子数来固定最优树模型。

random_state用来设置分枝中的随机模式的参数,默认None,在高维度时随机性会表现更明显,低维度的数据 (比如鸢尾花数据集),随机性几乎不会显现。输入任意整数,会一直长出同一棵树,让模型稳定下来。

splitter也是用来控制决策树中的随机选项的,有两种输入值,输入”best",决策树在分枝时虽然随机,但是还是会 优先选择更重要的特征进行分枝(重要性可以通过属性feature_importances_查看),输入“random",决策树在 分枝时会更加随机,树会因为含有更多的不必要信息而更深更大,并因这些不必要信息而降低对训练集的拟合。

加入splitter=‘random’以后会发现树变得更大更宽了,因为特征值选取更加随机了

默认是best

[展开全文]

重要参数

criterion

为了要将表格转化为一棵树,决策树需要找出最佳节点和最佳的分枝方法,对分类树来说,衡量这个“最佳”的指标 叫做“不纯度”。通常来说,不纯度越低,决策树对训练集的拟合越好。

不纯度基于节点来计算,树中的每个节点都会有一个不纯度,并且子节点的不纯度一定是低于父节点的,也就是 说,在同一棵决策树上,叶子节点的不纯度一定是最低的。

Criterion这个参数正是用来决定不纯度的计算方法的。sklearn提供了两种选择:

1)输入”entropy“,使用信息熵(Entropy) 2)输入”gini“,使用基尼系数(Gini Impurity)

当使用信息熵 时,sklearn实际计算的是基于信息熵的信息增益(Information Gain),即父节点的信息熵和子节点的信息熵之差。

比起基尼系数,信息熵对不纯度更加敏感,对不纯度的惩罚最强。但是在实际使用中,信息熵和基尼系数的效果基 本相同。信息熵的计算比基尼系数缓慢一些,因为基尼系数的计算不涉及对数。另外,因为信息熵对不纯度更加敏 感,所以信息熵作为指标时,决策树的生长会更加“精细”,因此对于高维数据或者噪音很多的数据,信息熵很容易 过拟合,基尼系数在这种情况下效果往往比较好。当模型拟合程度不足的时候,即当模型在训练集和测试集上都表 现不太好的时候,使用信息熵。当然,这些不是绝对的

 

[展开全文]

决策树

1、概述

决策树是一种非参数的有监督学习方法,它能够从一系列有特征和标签的数据中总结出决策规则,以解决分类和回归问题。

2、关键概念:节点

根节点:没有进边,有出边。包含最初的,针对特征的提问。

中间节点:既有进边也有出边,进边只有一条,出边可以有很多条。都是针对特征的提问。

叶子节点:有进边,没有出边,每个叶子节点都是一个类别标签。

子节点和父节点:在两个相连的节点中,更接近根节点的是父节点,另一个是子节点。/3、

3、决策树算法的核心是要解决两个问题:

1)如何从数据表中找出最佳节点和最佳分枝? 2)如何让决策树停止生长,防止过拟合?

4、模块sklearn.tree的使用

 

[展开全文]

1.str()实现数字转型字符串

print(str(1))  #1
print(str(34.5))  #34.5

2.使用[]提取字符

字符串的本质就是字符序列,可以通过在字符串后面添加[]里面指定偏移量,可以提取该位置的单个字符。

正顺序从0,1顺序标号,负顺序从-1,-2倒数标号。

a="abcdefdhigklmnopqrstuvwxyz"
print(a[1])  #b
print(a[-1])   #z

3.replace()实现字符串“改变”

字符串不可改变,调用replace()生成新字符串,原字符串并没有变化。

a="abcdefdhigklmnopqrstuvwxyz"
print(a.replace('c','付'))   #ab付defdhigklmnopqrstuvwxyz
print(a)   #abcdefdhigklmnopqrstuvwxyz  原字符串的值不更改
a=a.replace('c','付')    #a指向新的字符串
print(a)  #ab付defdhigklmnopqrstuvwxyz   a的值被更改
[展开全文]