机器学习简介
机器学习、深度学习可以做什么?
(自然语言处理、图象识别、传统预测)
机器学习库和框架
scikit learn、TensorFlow
课程定位:
以算法、案例为驱动的学习,浅显易懂的数学知识
注意:参考书比较晦涩难懂,不建议直接读
课程目标:
熟悉机器学习各类算法的原理
掌握算法的使用,能够结合场景解决实际问题
掌握使用机器学习算法库和框架
机器学习课程
特征工程;模型、策略、优化,分类、回归和聚类,TensorFlow,神经网络,图象识别,自然语言处理
机器学习简介
机器学习、深度学习可以做什么?
(自然语言处理、图象识别、传统预测)
机器学习库和框架
scikit learn、TensorFlow
课程定位:
以算法、案例为驱动的学习,浅显易懂的数学知识
注意:参考书比较晦涩难懂,不建议直接读
课程目标:
熟悉机器学习各类算法的原理
掌握算法的使用,能够结合场景解决实际问题
掌握使用机器学习算法库和框架
机器学习课程
特征工程;模型、策略、优化,分类、回归和聚类,TensorFlow,神经网络,图象识别,自然语言处理
步长定义
good 重点内容
秩 铺垫
要点总结
二阶导数是凸函数?
SymPy 符号运算包 函数运算
1.O表示多项式的阶
2.o (n)
上确界:M=supE
下确界:M=infE
向量组的秩
所有等价线性无关组含有的向量个数相等
隐马可夫链,
期望不能反映收益,
temperature是气温, 100度很吓人啦 XD
事件:样本点的合集
事件运算:
包含,等价,对立(逆事件)
AUB, A,B事件的并
A∩B=AB,A,B事件的交集
AB=空集, A∪B=A+B 称为和
A-B=AB(逆)
交换律A∪B=B∪A, AB=BA
结合律(A∪B)∪C=A∪(B∪C),ABC=A(BC)
分配律(A∪B)∩C=AC ∩ BC
(A∩B)∪C=(A∪C)∩(B∪C)
德摩根定理:分开反号