3118-吴婷-人工智能学科-数据挖掘方向-就业:否 扫二维码继续学习 二维码时效为半小时

(0评价)
价格: 免费

动量和学习率衰减

动量——惯性

动量是考虑了之前的运动方向的变量

不考虑动量的情况下,会在局部极小值点停止

考虑动量的情况下,在局部极小值点处仍然会向前走,比较容易找到全局最优解

优化器中SGD没有考虑动量,可以自己加momentum参数,Adam里面考虑了动量因素,不需要手动加

学习率衰减——迫使学习率逐渐变为0

这这里我们并不能指明最合适的学习率,但我们可以让学习率递减,好处是可以较快得找到更好的解

方法一:使用ReducelROnPlateau()函数,传入optimizer 和min,前者用来识别学习率的值,后者用来监听loss,当在某一个学习率上在一定的步长范围内,loss都没有很明显的变化,我们的函数将会自动调整学习率;

方法二:直接规定一个确切步长,确定一个变化率

[展开全文]

如何减轻过拟合?Regularization泛化

Occam's Razor:
more thing should not be uesd than are necessary 任何不必要的都不需要

1、提供更多的数据——这是代价做大、也是最困难的方法;

2、简化模型

shallow模型不需要用太复杂的,尤其是当数据集有限的时候。shallow是一个相对的概念,跟数据集大小和网络的复杂度有关。

regularization

我们一开始的目标是最小化交叉熵,下面是目标函数:

但经过训练之后,为了增强模型的表达能力,很可能出现一个7次方的函数式

接下来我们增加一个参数范式,这里的参数有w1,b1,w2,b2等等

可以是一范数,可以是二范数。

优势1:当我们的总目标是尽可能小化J(Q)时,一范式参数值也会尽可能得小,总体来说会使我们的模型更加平缓和稳定,更加具有总体数据代表性。

优势2:会简化模型,有可能将高次方模型转变为低次方模型,同时还能保持模型的表达性

 

常用的有一范式和二范式

L2_regularization

这个wieght_decay是二范式的参数值,传入这个参数就可以以二范式进行泛化了

L1_regularization

现阶段没有参数一范数的现成代码,需要自己敲

3、Dropout——增加鲁棒性

4、Data argumentation——数据增强

5、Early Stopping——提前终结

 

 

[展开全文]

K-flod cross-validation

交叉检验第一次切分的train set 和 val set可以重新整合之后再次随机切分,长时间来说,每个数据都有可能参与到训练中,防止了模型死记硬背,还能充分利用现有的数据集,这样增加了训练的准确性。

 

[展开全文]

怎样检测过拟合?

通过测试集中的准确率来检测学习情况,提前终止overfitting的情况,我们往往会选取准确率达到最大值的参数为模型的最佳参数值,用来提供给客户做预测检验

上述是我们教学过程中的实验,只有两个数据集,traning和test(这里的test也是val set),但是在实际应用中,我们通常有三个数据集,train set用来学习,val set用来挑选最佳参数和模型,最后由用户的test set来进行检验

最终交付给test set之后是不能反馈准确率的,否则在此基础上再次挑选参数和模型,这个test set的作用和val set就一样了——数据污染,某种程度上讲,是一种作弊

[展开全文]

欠拟合:使用模型的复杂度小于真实模型的复杂度

体现在:训练集的loss和准确率都不够理想;测试集的loss和准确率也不理想。

过拟合:使用模型的复杂度大于真实模型的复杂度

体现在:train训练的时候loss和准确率都表现得非常好,但是在测试集上变现得特别不好——泛化能力较差(Generalization Performance)

现实生活中,更多的情况是overfitting。数据集有限,包含了噪声会被模型学习到。

[展开全文]

全连接层

nn.Linear(in, out)

简便方法:

 

[展开全文]

Binary Classification

这里的p值是最后的通过激活函数之后的概率值

y是0或1(one—hot编码)

交叉熵从0.916到0.02时,越接近于我们的目标:

是变好的过程

[展开全文]

Entropy——熵,指不确定性

熵大则信息量量比较小,越稳定,越没有惊喜度

Cross Entropy

Dkl表示的是两个概率分布的距离,当两个概率分布完全相同的时候,距离为0,Dkl=0

当P=Q时:corss Entropy=Entropy

即H(p,q)=H(p)

且在0ne—hot编码规则下H(p)=0, 那我们优化的目标是:

[展开全文]

线性回归和逻辑归回/分类问题的区别:

1、函数式不同:

linear regression

y=wx+b;

ligistic regression——在线性回归的基础上加了一个激活函数

2、目标不同:

线性回顾的目标是预测值接近于真实值;

逻辑回归问题的目标是在x的条件下训练得到y值的概率和当自变量为x时,真实的等于y的概率之间差值最小

无法直接最大化准确率:

准确率的公式为:

分母为所有的y值,分子为预测值等于真实值的个数

(1)存在梯度为0的情况;

计算得到的p=0.4,调整权重之后得到0.45,虽然概率增加了,但是accuray没有发生变化

(2)也有可能存在梯度爆炸的情况

当p值从0.499变动到0.501时,准确的个数增加了一个,当y值(=5)数量较少是,准确个数从3变为4,那么准确率从0.6变动到0.8,准确率变化了0.2,而概率值变动了0.002,则会存在断层连续的情况,也就是梯度爆炸

多类别分类问题——softmax激活函数

 

[展开全文]

反向传播

这里的激活函数统统是sigmoid

总结:在案例中,oi是输入层,但我们要求得是一个广泛使用的式子,也就是说,在这里我们认为oi是隐藏层。

[展开全文]

多输出感知机的梯度推导

激活函数仍然是sigmoid,且y的估计函数用到的仍然是一次线性回归函数

 

[展开全文]

感知机的梯度推导

 

这里的激活函数是sigmoid激活函数,所以对其求到的结果是,且使用的回归函数是一次线性回归函数。

 

[展开全文]

求导

softmax的公式为:

当i=j的时候求导结果为:

当i不等于j的时候求导结果为:

 

[展开全文]

softmax

扩大了值之间的差距

 

[展开全文]

loss及其梯度

典型的loss函数 有:

(1)均方差

注意:MSE不同于二范数

MSE不开根号!

求导

 

(2)Cross Entropy Loss

可以用于二分类、多分类问题,经常使用softmax激活函数

[展开全文]

激活函数及其梯度

为了解决激活函数不可导的情况,提出了sigmoid/logistic:光滑可导的函数,且把无穷的值域压缩到[0, 1]的范围内

但是会出现梯度离散的情况,参数无法得到更新,因为越往后,导数值与接近于0

sigmoid函数求导之后如下:

Tanh在RNN里面用得比较多

求导:

Relu使用最多的激活函数

计算导数的时候非常简单,导数为1。不会放大也不会缩小,很大程度上减少了梯度爆炸和梯度离散发生的可能性

 

 

[展开全文]

递归算法

1.定义递归头

2.递归体

 

def fact(n):

    if n==1:

         return n

    else:

         return n*fact(n-1)

print(fact(5))

[展开全文]