使用随机森林填补缺失值。n个数据,特征T有缺失值,把特征T当作标签,作为训练集。遍历所有特征,缺失值最少的特征进行填补,因为一开始需要的缺失值最少。当进行到最后一行时,那么在弥补缺失值最多的数据时,就有足够多的准确数据了。
使用随机森林填补缺失值。n个数据,特征T有缺失值,把特征T当作标签,作为训练集。遍历所有特征,缺失值最少的特征进行填补,因为一开始需要的缺失值最少。当进行到最后一行时,那么在弥补缺失值最多的数据时,就有足够多的准确数据了。
随机森林填补获取数据集时的缺失值。
sklearn.impute.SimpleImputer轻松填补数据缺失值。
随机森林的回归。
分类树与回归树,MSE均方误差。
回归树衡量指标mse、firedman_mse与MAE
sklearn使用负值的均方误差作为衡量指标,因为表示的是损失。
load_boston是一个标签连续型数据集。
regressor是模型
boston.data完整的矩阵、boston.target是标签。来回验证十次,scoring选择指标进行打分。
一半以上的决策树判断错误,才会导致随机森林才会判断错误。
comb是求和。
相同的训练集与参数,随机森林中的树会有不同的判断结果,选择重要的特征进行提问。
estimators,查看森林中树的参数或属性。每棵树中的random_state不一样,导致每棵树都不一样。
random_state固定,随机森林中的树是固定的,但随机挑选的特征,导致树是不一样。随机性越大,效果越好。
bootstrap用于控制抽样技术的参数。
自主集:从原始训练集中进行n次有放回抽样,得到的数据集。自主集会包含63%的原始数据集元素。剩下37%数据可以作为测试模型的数据,称为袋外数据。
wine.target为wine的标签。
一个自助集里,样本A永远不被抽到的概率:(1-1/n)^n
oob_score训练分数。
apply返回所在叶子节点的索引
predict_proba返回每个样本对应类别的标签的概率。
n_estimators基评估器数量,该值越大,越好。
到达一定程度后,精确性会开始波动。
集成算法:在数据上构建多个模型,集成所有模型的建模结果。
集成算法会考虑多个评估器的建模结果,汇总之后得到一个综合的结果。
集成评估器:基评估器,装袋法,提升法,stacking
sklearn中的ensemble,集成算法有一半以上都是树的模型。决策树用于分类和回归问题。通过有特征和标签的表格中,通过对特定特征进行提问,总结出决策规则。
如何找到正确的特征去提问,定义衡量分支质量的指标不纯度。
列表对象的创建
可变字符串
字符串格式化
format
填充与 对齐
字符串的驻留机制
字符串切割 split()
作用:基于指定字符串将字符串分隔成多个子字符串
a.spilt()
字符串拼接
字符串切片 slice
作用::截取子字符串。包头不包尾
字符串
str()函数
定义:将其他类型转为字符串
[]提取字符
replace
创建一个的字符串,
a.relace('c','高')
字母、数字、下划线组成,必须以字母或下划线开头
a = 3
将3的存储地址赋值给变量a。引用a
切片操作包头不包尾
预处理过程,接受固定规整的图片,需要resize图像,224x224。
数据增强,随机的裁剪和旋转。
Normalize
Mean std。
Totensor:流化。
首先继承一个通用的母类,torch.utils.data.Dataset
读取具体的样本,__getitem__
normlize:batch_norm正则化,
一范数:绝对值求和。
二范数:平方和求和开方。
自动扩展,不需要拷贝数据。