2503-郑同学-算法方向-计算机视觉-就业:是 扫二维码继续学习 二维码时效为半小时

(0评价)
价格: 免费

一半以上的决策树判断错误,才会导致随机森林才会判断错误。

comb是求和。

相同的训练集与参数,随机森林中的树会有不同的判断结果,选择重要的特征进行提问。

estimators,查看森林中树的参数或属性。每棵树中的random_state不一样,导致每棵树都不一样。

random_state固定,随机森林中的树是固定的,但随机挑选的特征,导致树是不一样。随机性越大,效果越好。

bootstrap用于控制抽样技术的参数。

自主集:从原始训练集中进行n次有放回抽样,得到的数据集。自主集会包含63%的原始数据集元素。剩下37%数据可以作为测试模型的数据,称为袋外数据。

wine.target为wine的标签。

一个自助集里,样本A永远不被抽到的概率:(1-1/n)^n

oob_score训练分数。

apply返回所在叶子节点的索引

predict_proba返回每个样本对应类别的标签的概率。

[展开全文]

n_estimators基评估器数量,该值越大,越好。

到达一定程度后,精确性会开始波动。

[展开全文]

集成算法:在数据上构建多个模型,集成所有模型的建模结果。

集成算法会考虑多个评估器的建模结果,汇总之后得到一个综合的结果。

集成评估器:基评估器,装袋法,提升法,stacking

sklearn中的ensemble,集成算法有一半以上都是树的模型。决策树用于分类和回归问题。通过有特征和标签的表格中,通过对特定特征进行提问,总结出决策规则。

如何找到正确的特征去提问,定义衡量分支质量的指标不纯度。

[展开全文]

sklearn中的信息熵,实际上是信息增益。即父节点的信息熵-子节点的信息熵。

[展开全文]
2426_Y_zyj · 2022-01-26 · 解锁式学习 0

非参数:即不限制数据结构和类型

有监督:有标签

[展开全文]
2426_Y_zyj · 2022-01-26 · 解锁式学习 0

上确界:M=supE

下确界:M=infE

[展开全文]

向量组的秩

所有等价线性无关组含有的向量个数相等

 

[展开全文]
2243_N_Z. · 2021-11-24 · 自由式学习 0

隐马可夫链,

 

期望不能反映收益,

[展开全文]
2243_N_Z. · 2021-09-27 · 自由式学习 0

啊深度啊收到卡后

[展开全文]
syg测试 · 2021-09-06 · 解锁式学习 0

老师的卷发就到了发掘了深刻的

[展开全文]
syg测试 · 2021-09-06 · 解锁式学习 0

事件:样本点的合集

事件运算:

包含,等价,对立(逆事件)

AUB, A,B事件的并

A∩B=AB,A,B事件的交集

AB=空集, A∪B=A+B 称为和

A-B=AB(逆)

交换律A∪B=B∪A, AB=BA

结合律(A∪B)∪C=A∪(B∪C),ABC=A(BC)

分配律(A∪B)∩C=AC ∩ BC

(A∩B)∪C=(A∪C)∩(B∪C)

德摩根定理:分开反号

[展开全文]
1553_N_GX · 2021-05-27 · 自由式学习 0
  1. 集合
  2. 元素
  3. 描述方式
  4. ​​​​​​​子集
  5.  
[展开全文]