数据标准化,把它变成标准分布。
数据标准化,把它变成标准分布。
Step 2:预处理
Step 1:创建自定义数据集
w = torch.rand(16, 3, 5, 5)
= (ker_num, input_channel, ker_size, ker_size)
Input_channels:
Stocastic: 随即筛选样本
val_set: for detecting overfitting
torch.nn.function
.matmul() 取后两维相乘
unsqueeze:
正:在之前插入
负:在之后插入
.index_select(0, [0, 2])
torch.tensor([2., 3.2])
torch.FloatTensor(2, 3)
Unintialized: 未初始化的tensor
增强学习一般用 DoubleTensor
Likelihood
Sequence Generation
Conditional Sequence Generation
Maximizing Expected Reward
Policy Gradient
Conditional GAN
Abtractive Summarization
GAN + Autoencoder
Feature Extraction:
InfoGAN
VAE-GAN
BiGAN
Triple GAN
Feature Disentangle v. 解开
J-S divergence proplem
Wasserstein GAN:
Earth Mover's Distance
Lipschitz Function
intractable adj. 棘手的 <==> difficult
f-divergence
exponential adj. 指数
Theory behind GAN:
Divergence
KL Divergence
sample v. 抽样
J-S divergence
Unsupervised Conditional Generation
CycleGAN:
Cycle consistency