【1439】【覃同学】
【个人情况】:上交,数学专业博士。代码方面python无基础,数据结构不了解,机器学习和深度学习无基础。目前在一家创业公司,有sql学习需求。
【学习目标】:大数据推荐,用户分析,用户画像等,有急于上手公司推荐系统的需求。
【备注】:
【学习方向】:推荐系统方向
【是否需要就业】:是
【目标就业地点】:一线城市
【课程学习顺序】:如学生有特殊要求,比如需要紧急完成论文,学习哪个阶段的内容。可以在该阶段下写上需要先学习的内容(可以按照阶段前面的数字进行标号)。方便学生和复审老师明确学习顺序。
(按照顺序学习即可,有问题随时跟老师联系调整)
【学员课程安排】:有任何疑问,在群里随时艾特或者ding教务老师和电话测评的老师!尽快解决,达到当前阶段没有疑问为止。
===============章节分割线===============
【第1阶段】:数学阶段
【监督方式】:弱监督
「第1章」:数学基础
课程名称:【710】【1、高数基础---人工智能AI数学基础(完全0基础数学)】
课程内容:高数的系统知识学习,不建议从头到尾观看。浪费时间,可以通过数学加强课程中的数学知识,针对性复习。
---考核---(可选择,联系教务老师)
「第2章」:数学基础
课程名称:【709】【2、概率基础---人工智能AI数学基础(完全0基础数学)】
课程内容:概率的系统知识学习,不建议从头到尾观看。浪费时间,可以通过数学加强课程中的数学知识,针对性复习。
---考核---(可选择,联系教务老师)
「第3章」:数学基础
课程名称:【683】【3、统计基础---人工智能AI数学基础(完全0基础数学)】
课程内容:统计的系统知识学习,不建议从头到尾观看。浪费时间,可以通过数学加强课程中的数学知识,针对性复习。
---考核---(可选择,联系教务老师)
===============章节分割线===============
【第2阶段】:编程阶段
【监督方式】:强监督
「第1章」:Python基础
课程名称:【3350】【Python基础知识-pycharm版】
课程内容:python基础入门知识,对于算法中需要的基础的python做了一个系统的学习。
---考核---(可选择,联系教务老师)
「第2章」:数据结构基础
课程名称:【34】【Python数据结构与算法】
课程内容:数据结构入门,主要讲解了堆、栈、链表、快排、二分、树等数据结构与算法,课程末尾将会提供leetcode刷题教程,请需要就业的徒弟务必重视练习。
---考核---(可选择,联系教务老师)
「第3章」:数据科学库基础
课程名称:【30】【机器学习---数据科学包】
课程内容:讲解了目前主要是pandas、numpy、matpoltlib库的使用。
---考核---(可选择,联系教务老师)
「第4章」:MySQL基础
课程名称:【8】【MySQL】
课程内容:主要讲解了mysql数据库的使用,开发人员的基本操作。如果时间充足,可以系统学习,如果想要快速进入算法,可以跳过,不影响接下来的算法学习。
---考核---(可选择,联系教务老师)
「第5章」:Linux基础
课程名称:【14】【Linux】
课程内容:主要讲解了linux数据库的使用,开发人员的基本操作。如果时间充足,可以系统学习,如果想要快速进入算法,可以跳过,不影响接下来的算法学习。但是在进入项目阶段之前必须进行学习。
---考核---(可选择,联系教务老师)
「第6章」:Git基础
课程名称:【2157】【Git】
课程内容:主要讲解git工具的使用,在入职之前进行学习也可以,不影响算法阶段学习。开发人员的基本操作
---考核---(可选择,联系教务老师)
===============章节分割线===============
【第3阶段】:机器学习阶段
【监督方式】:强监督
「第1章」:数学加强
课程名称:【29】【机器学习---数学基础加强】
课程内容:对机器学习常用的算法做了一个概览,偏难,如果有不会的,可以回到第一阶段中的数学课程中进行学习。
---考核---(可选择,联系教务老师)
「第2章」:机器学习基础
课程名称:【3142】【机器学习算法基础(基础机器学习课程)】
课程内容:机器学习基础算法的讲解,偏向于实现,对底层原理没有进行过多的阐述。
---考核---(可选择,联系教务老师)
「第3章」:机器学习进阶
课程名称:【31】【机器学习---算法加强】
课程内容:对机器学习深入的讲解,利用了大量的数学公式进行推导,足以应对工厂面试过程中问到的算法的底层远离的实现。比较难理解,需要多次吸收强化。如对该课程有不适应,请及时跟教务老师联系。
---考核---(可选择,联系教务老师)
「第4章」:机器学习框架
课程名称:【4168】【机器学习-Sklearn课程--V2】
课程内容:机器学习中的一个框架的学习,偏向于练习。
---考核---(可选择,联系教务老师)
===============章节分割线===============
【第4阶段】:深度学习阶段
【监督方式】:强监督
「第1章」:深度学习基础
课程名称:【9053】【深度学习-【2017版】【简版】】
课程内容:深度学习基础知识的讲解,对神经网络等深度学习常用的算法进行了讲解
---考核---(可选择,联系教务老师)
「第2章」:深度学习进阶
课程名称:【9054】【深度学习-【2020版】【深版】】
课程内容:深度学习深入知识的讲解,对神经网络等深度学习常用的算法进行了讲解
---考核---(可选择,联系教务老师)
「第3章」:深度学习框架
课程名称:【3196】【TensorFlow深度学习(第二版更新TF)-2】
课程内容:深度学习中的TensorFlow框架的讲解于使用。
---考核---(可选择,联系教务老师)
「第4章」:深度学习框架
课程名称:【9395】【Pytorch】
课程内容:深度学习中的Pytorch框架的讲解于使用。
---考核---(可选择,联系教务老师)
「第5章」:深度学习框架
课程名称:【9458】【深度学习-Tensorflow2.0】
课程内容:深度学习中TensorFlow2.X版本的讲解与使用。
---考核---(可选择,联系教务老师)
===============章节分割线===============
【第5阶段】:辅助阶段
【监督方式】:强监督
「第1章」:辅助课程
课程名称:【3173】【说明课程(基础知识与项目衔接说明课程)】
课程内容:项目阶段与基础阶段的分界点,在该课程之前为基础阶段,之后为项目阶段,如需更改方向,请在该阶段在群里与老师沟通。
---考核---(可选择,联系教务老师)
===============章节分割线===============
【第6阶段】:推荐方向阶段
【监督方式】:强监督
「第1章」:推荐方向前置知识阶段
课程名称:【4】【Hadoop视频】
课程内容:hadoop精简版课程,主要用于大数据推荐方向的学生了解常用的HDFS存储等知识。建议只需要了解,不用实操,其中hiveSQL语句可以重点学习一下。
---考核---(可选择,联系教务老师)
「第2章」:推荐方向前置知识阶段
课程名称:【25】【Spark---Scala课程】
课程内容:该课程主要讲解sprak框架使用的Scala语言,了解一下即可。可以快速学习,为大数据推荐系统做准备。
---考核---(可选择,联系教务老师)
「第3章」:推荐方向前置知识阶段
课程名称:【24】【Spark---Core课程】
课程内容:Sprak基础阶段理论学习,主要讲解了spark核心理论知识,可以快速学习,为大数据推荐系统做准备。
---考核---(可选择,联系教务老师)
「第4章」:推荐方向前置知识阶段
课程名称:【26】【Spark---SQL课程】
课程内容:Sprak基础阶段理论学习,主要讲解了sparkSQL理论知识,可以快速学习,为大数据推荐系统做准备。还阶段使用到了SQL语句。
---考核---(可选择,联系教务老师)
===============章节分割线===============
【第7阶段】:推荐方向阶段
【监督方式】:强监督
「第1章」:推荐方向算法理论阶段
课程名称:【3258】【1、大数据技术之机器学习和推荐系统-理论】
课程内容:该课程主要讲解了大数据推荐架构中常用的算法的实现和学习K近邻、逻辑回归、决策树等知识的讲解。重点学习的课程。
---考核---(可选择,联系教务老师)
「第2章」:推荐方向项目实践阶段
课程名称:【3528】【3、大数据技术之机器学习和推荐系统-电商推荐系统】
课程内容:该课程主要从推荐系统的设计-实现-测试各方面进行了讲解,通过了对电商数据的分析,然后使用推荐算法对模型进行设计,然后对各个模块进行实现。
---考核---(可选择,联系教务老师)
「第3章」:推荐方向算法理论阶段
课程名称:【2644】【1、头条NLP推荐系统基础】
课程内容:该课程主要是讲解了推荐系统的架构的理论实现,以及推荐系统常见的冷启动、数据集、NLP常用的基础知识等问题,然后讲解了大数据推荐系统常用的大数据框架的知识,如Hadoop、Kafka等知识的讲解。
---考核---(可选择,联系教务老师)
「第4章」:推荐方向项目实践阶段
课程名称:【1754】【2、头条NLP推荐系统项目】
课程内容:该课程主要讲解了文章推荐系统的整体的实现,其中通过对召回层、算法实现等的讲解,完成了整个文章推荐系统的视线,并且实现了调用。
---考核---(可选择,联系教务老师)
===============章节分割线===============
【第8阶段】:Kaggle练习阶段
【监督方式】:强监督
「第1章」:数据挖掘Kaggle阶段
课程名称:【2954】【1-Kaggle音乐推荐案例实战 】
课程内容:Kaggle中对数据挖掘的项目练习。
---考核---(可选择,联系教务老师)
「第2章」:数据挖掘Kaggle阶段
课程名称:【2956】【3-Kaggle基于pytorch的风格转换 】
课程内容:Kaggle中对数据挖掘的项目练习。
---考核---(可选择,联系教务老师)
【时间安排】:
学员可以自主安排学习时间。具体的时间可以灵活调整。
【相关规定】:
(1)每天完成今日学习任务,提交相应的csdn或者是有道云笔记之类的链接到每日作业中。老师会进行审核,每个阶段结束,进行阶段测评,测评通过,提交老师发布的通过截图到下一个课程的第一节的阶段卡点之后,方可进行下一章内容的学习。
(2)每个章节结束,如果觉得吸收比较乱,知识点多,可以进行xmind脑图的构造一下整体的思路!
(3)项目阶段,需要录制或者文档落地针对做过的项目的自述!
(4)每天必须按计划完成任务,临时有事需在日报中说明情况即可,长期请假请联系教务老师。
(5)考核不通过需要缴费补考,50元是第一次,每次增加50元,200元封顶(此项如有疑问,可以联系教务老师进行更改)。
【参考博客】:第二天早晨八点半,会有拜师晨报提醒。当中有学生优秀博客,可以查看学生的排版
【监督相关说明】:
弱监督:不需要每天提交作业,直接可以解锁课程,适合于自制力能力强的。
强监督:需要学习完一个课程通过管理员解锁才能继续学习下一个阶段,适合于自制力不够强,已经参加工作的学员。
【工作安排】:
(1)、批改作业,环境安装!还有学习过程中有不会的问题的话,艾特软件安装以及基础答疑老师!
(2)、学习过程中如果有什么问题和疑问,可以艾特答疑老师!
(3)、如果计划需要更改,可以群里艾特我和跟你电话测评沟通的老师进行沟通!
(4)、如果有什么方向上面的疑问,可以艾特相关的答疑老师和计划制定的老师!
(5)、如果不知道找哪位老师的话,或者问题比较紧急的可以艾特教务老师进行处理,或者有什么意见和建议(直接私聊教务老师)!教务老师会进行受理!