程XXX,博士,航海工程,需要使用python重新加强,数学重新加强,机器学习深度学习重新加强,机器学习能够深入理解。
#学习目标重申:机器学习深度学习有基础提升和强化。帮助到自己打基础和拓展技能。通过数据挖掘结合计算机视觉目标检测,图像分类,人脸识别加强学习。把计算机视觉建立知识体系。
注意:数学基础已经具备
目前:打好机器学习和深度学习基础
#计算机视觉方向零基础提高
1,必填项:
学员分类:计算机视觉提高
学习方向:计算机视觉
是否就业:否
监督方式: 全部阶段设置为强监督
是否需要阶段考核:是
学习目标:零基础学习深度学习与机器学习,计算机视觉提高实现科研目的。注意:目前主要打好机器学习基础,计算机视觉基础为主。解决数据挖掘和计算机视觉问题。
1.该学员有高数线代概率基础,但是暂且不需要重新加强,机器学习基础简单接触过,重新开始加强。需要就业。
2.希望能够通过学习从基础完成机器学习基础等问题,能够应对计算机视觉和关于图像方面问题,项目设置为可以从相关的图像识别,人脸识别项目案例入手。数据挖掘也需要掌握。
3.python从零基础开始学习,然后学习numpy,pandas数据科学库学习。建议基础阶段采用强监督学习,每天只要学习需要提交博客,每个阶段提交xmind,加强阶段和项目阶段强监督学习。
学员课程安排:
1,数学基础课程:(弱监督)
第1阶段:线性代数
第2阶段:高等数学
第3阶段:概率论
第4阶段:统计学
注意:提供文档和视频,如果文档看不懂,可以看视频。
2,语言基础(全部强监督)
第1阶段:python基础~重点加强
包括:数据科学库基础
第2阶段:python数据结构
包括:python数据结构
第3阶段:数据科学库基础
包括:numpy,pandas,matplotlib
3,机器学习阶段:(重点课程,强监督)
第1阶段:机器学习数学基础加强。
包括:高数,概率,线代加强
第2阶段: 机器学习基础
包括:机器学习算法理论基础,基础核心算法
第3阶段:机器学习进阶
包括:分类算法,聚类算法,回归算法,HMM
第4阶段:sklearn机器学习实战
包括:特征工程,建模代码实战
3,深度学习阶段(重点课程,强监督)
第1阶段:深度学习基础
包括:深度学习的基础算法
第2阶段:tensorflow深度学习技术实战
包括:tf深度学习实战
4,项目阶段:(强监督)
第1阶段:opencv图像处理基础知识
包括:图像处理基础知识
第3阶段:微信小程序人脸识别项目实战
包括:人脸识别项目
第6阶段:目标检测与物体检测项目
包括:python人工智能项目进阶第四部分2952
第7阶段:百度人脸识别
包括:python人工智能项目进阶第2部分2950
第4阶段:图像识别项目
包括:kaggle视觉聊天机器人项目2960
第5阶段:图像识别项目
包括:kaggle的pytorch风格转换场景2956
第8阶段:安排面试流程
时间安排:
学员可以自主安排学习时间
每天提交xmind复习笔记和博客笔记。同时每天学习整理知识点,整理笔记到博客,可以选择博客园博客。将重点知识点录屏自己讲出来(学习方式中吸收最好的方式是给别人讲出来),并提交作业。
相关规定:每天必须按计划完成任务,否则将停发学习任务,临时有事需请假。考核不通过需要缴费补考。
参考博客:https://blog.csdn.net/Andrew___A/article/details/101096331
相关解释:
弱监督:不需要每天提交作业,直接可以解锁课程,适合于自制力能力强的。
强监督:需要学习完一个课程通过管理员解锁才能继续学习下一个阶段,适合于自制力不够强,已经参加工作的学员。