超平面:就是低于
超平面:就是低于
如何进行增维?(放到回归树中的数据必须是二维的)
1).reshape(-1,1)
2)[:,np.newaxis]
交叉验证()
1、观察模型稳定性的一种方法,避免测试集训练集划分导致模型不同
2、数据分为n份,依次把其中一份作为测试集,其他为训练集,交叉验证n次求平均值
3、model_selection.cross_val_score的五个参数
1)任何实例化的算法模型
2)不需划分测试集、训练集的特征矩阵
3)不需划分的完整标签
4)cv=10,做十次交叉验证,数据划分为十份,每次一份为测试集,剩下为训练集,通常选5,默认为5
5)scoring="neg_mean_squared_error",neg_mean_squared_error负均方误差。用这个指标评估交叉验证的结果。不填,回归默认返回R平方
1、回归问题处理的是连续型变量
交叉验证(model_selection.cross_val_score)
1、观察模型稳定性的一种方法,避免测试集训练集划分导致模型不同
2、数据分为n份,依次把其中一份作为测试集,其他为训练集,交叉验证n次求平均值
1、回归问题处理的是连续型变量
回归树
一、参数、属性、接口几乎和分类树相同)
二、回归树没有标签分布均衡问题,没有class_weight
三、参数criterion差异
1、="mse",均方误差
1)父节点和子节点均方误差的差额,本质是样本真实数据和回归结果的差异。
2)在回归树中,MSE是分枝质量衡量指标、回归树回归质量衡量指标。越小越好。
3)回归树接口score返回的是R平方,不是MSE,取值为负无穷到1,MSE总为正,sklearn中为负值
2、="friedman_mse",费尔德曼均方误差
3、="mae",绝对平均误差
四、目标权重参数(用的少)
控制目标权重,保持样本标签平衡(不平衡:某类标签占比大,决策树会向占比大标签偏移)
1、class_weight
1)给少量标签更多权重,参数默认None(所有标签相同权重)
2、min_weight_fraction_leaf
1)基于权重的剪枝参数,比min_samples_leaf更偏向主导类
2)样本加权使用此参数剪枝
重要接口
1、fit训练,score
2、apply测试样本叶子节点索引,predict返回测试样本分类或回归标签结果(只输入训练集特征,不需要标签y)
注:所有接口中要求输入x_test或x_train部分必须输入二维矩阵,不接受任何一维矩阵输入,若数据只有一个样本,reshape(-1,1)增维
4、max_features
1)限制分枝考虑的特征个数
2)用于高维数据,防止过拟合
3)缺点:强行设定会导致模型学习不足。
4)如果希望通过降维防止过拟合,最好使用PCA,ICA中的降维算法
5、min_impurity_decrease
1)限制信息增益的大小,信息增益小于指定数值的分枝不会发生
2)信息增益:父节点和子节点信息熵的差(子节点信息熵一定小于父节点信息熵),越大,这一层分枝对决策树贡献越大
注:
1)如何确定最优的剪枝参数?画出超参数学习曲线
2)剪枝参数不一定能提升模型在测试集上的表现
三、剪枝参数:正确剪枝是优化决策树算法的核心
注:剪枝后准确度不下降,保留剪枝参数,避免重复计算;准确度下降,注掉参数
1、max_depth:限制树的最大参数
高维度、低样本量非常有效,从=3开始尝试,看拟合效果再增加深度
2、min_sample_leaf
1)一个节点在分枝后,每个节点至少包含min_sample_leaf个训练样本samples
2)一般和max_depth搭配使用
3)太小:过拟合,太大:阻止模型学习数据
4)从=5开始使用;
训练集测试集划分不平衡:输入浮点数(含义为样本总量*小数);
类别不多,=1通常最好
3、min_sample_split
1)一个节点至少min_sample_split个样本才被允许分枝
控制随机性的两个参数
1、random_state:控制随机模式,使每次结果一致,默认为None
决策树高维随机性明显,低维度数据集随机性不会显现
2、splitter:控制随机性,可以与random_state同时设置,如果设置了反而准确度降低则不写
1)="best",默认,分枝随机,但会优先选更重要特征进行分枝
2)="random",更随机,决策树会更深,拟合程度更低(防止过拟合)
决策树重要参数
1、criterion:决定不纯度计算方法
entropy信息熵,gini基尼系数
不纯度:
ordinalencoder
数据标准化:数据按照均值中心化后,再按标准差缩放,数据就会变成均值为0方差为1的正态分布
API:from sklearn.preprocessing import StandardScaler
特征工程:
去中心化:让所有记录减去一个固定值。
数据归一化:把数据按照最小值中心化后再按极差缩放,然后被收敛到0-1之间
preprocessing.minmax
:
数学基础复习:
一、微分(上)
(1)O(n) o(n)
order---多项式的阶
f(x)=O(g(x)):
f(x)=o(g(x)):
(2)
fsfada
Linux操作系统遵循posix。应用程序与内核的应用。
#apply返回每个测试样本所在叶子节点的索引
clf.apply(xtext)
#predict返回每个测试样本的分类、回归结果
clf.predict(xtest)
特征函数与中心极限定理没看懂