3718-孙巧玲-人工智能-计算机视觉 扫二维码继续学习 二维码时效为半小时

(0评价)
价格: 免费

使用zip()并行迭代

zip()函数对多个序列进行迭代

[展开全文]

循环代码优化(循环次数较多)

(1)尽量减少循环内部不必要的运算。

(2)嵌套循环中,尽量减少内层循环的计算,尽可能向外提。

(3)局部变量查询较快,尽量使用局部变量。

(4)连接多个字符串,使用join而不使用+

(5)列表进行元素插入和删除,尽量在尾部jin'xing

[展开全文]

else语句

while、for循环可以附带一个else语句(可选)。如果for、while语句没有被break语句结束,则会执行else子句。否则不执行。

[展开全文]

文本特征抽取:Count 

功能:

文本分类

情感分析

默认对于单个英文字母或者单词:没有不统计

词组分类器:jie'ba

 

[展开全文]

特征抽取:特征值化

字典数据特征抽取:对字典数据进行特征值化

 

DictVectorizer语法:

字典数据抽取:将字典中的一些类别数据,分别转换成一些数值。

数组形式:有类别的这些特征,先要转换字典数据

[展开全文]

pandas数据处理

:缺失值,数据转换,重复值(不用处理)

sklearn:对特征进行处理

 

 

[展开全文]

重要属性components_

通常来说,在新的特征矩阵生成之前,我们无法知晓PCA都建立了怎样的新特征向量,新 特征矩阵生成之后也不具有可读性,我们无法判断新特征矩阵的特征是从原数据中的什么特征组合而来,新特征虽 然带有原始数据的信息,却已经不是原数据上代表着的含义了。

但是其实,在矩阵分解时,PCA是有目标的:在原有特征的基础上,找出能够让信息尽量聚集的新特征向量。

如果原特征矩阵是图像,V(k,n)这 个空间矩阵也可以被可视化的话,我们就可以通过两张图来比较,就可以看出新特征空间究竟从原始数据里提取了 什么重要的信息。

 

[展开全文]

PVC中的SVD

重要参数svd_solver 与 random_state

"auto":基于X.shape和n_components的默认策略来选择分解器:如果输入数据的尺寸大于500x500且要提 取的特征数小于数据最小维度min(X.shape)的80%,就启用效率更高的”randomized“方法。否则,精确完整 的SVD将被计算,截断将会在矩阵被分解完成后有选择地发生。

"full":从scipy.linalg.svd中调用标准的LAPACK分解器来生成精确完整的SVD,适合数据量比较适中,计算时 间充足的情况,生成的精确完整的SVD的结构为:

"arpack":从scipy.sparse.linalg.svds调用ARPACK分解器来运行截断奇异值分解(SVD truncated),分解时就将特征数量降到n_components中输入的数值k,可以加快运算速度,适合特征矩阵很大的时候,但一般用于 特征矩阵为稀疏矩阵的情况,此过程包含一定的随机性。截断后的SVD分解出的结构为:

"randomized",通过Halko等人的随机方法进行随机SVD。在"full"方法中,分解器会根据原始数据和输入的 n_components值去计算和寻找符合需求的新特征向量,但是在"randomized"方法中,分解器会先生成多个随机向量,然后一一去检测这些随机向量中是否有任何一个符合我们的分解需求,如果符合,就保留这个随 机向量,并基于这个随机向量来构建后续的向量空间。这个方法已经被Halko等人证明,比"full"模式下计算快 很多,并且还能够保证模型运行效果。适合特征矩阵巨大,计算量庞大的情况。

 

 

 

[展开全文]

重要参数n_components

n_components是我们降维后需要的维度,即降维后需要保留的特征数量,降维流程中第二步里需要确认的k值, 一般输入[0, min(X.shape)]范围中的整数。K是一个需要我们人为去确认的超参数,并且我们设定的数字会影响到模型的表现。就达不到降维的效果,如果留下的特征太少,那新特征向量可能无法容纳原始数据集中的大部分信息,因此,n_components既不能太大也不能太小。那怎么办呢?

可以先从我们的降维目标说起:如果我们希望可视化一组数据来观察数据分布,我们往往将数据降到三维以下,很 多时候是二维,即n_components的取值为2。

[展开全文]

PCA使用的信息量衡量指标,就是样本方差,又称可解释性方 差,方差越大,特征所带的信息量越多。

下去补补数学知识吧···

将为过程的主要步骤如下:

思考:PCA和特征选择技术都是特征工程的一部分,它们有什么不同?

特征工程中有三种方式:特征提取,特征创造和特征选择。仔细观察上面的降维例子和上周我们讲解过的特征 选择,你发现有什么不同了吗?

特征选择是从已存在的特征中选取携带信息最多的,选完之后的特征依然具有可解释性,我们依然知道这个特 征在原数据的哪个位置,代表着原数据上的什么含义。

而PCA,是将已存在的特征进行压缩,降维完毕后的特征不是原本的特征矩阵中的任何一个特征,而是通过某 些方式组合起来的新特征。通常来说,在新的特征矩阵生成之前,我们无法知晓PCA都建立了怎样的新特征向 量,新特征矩阵生成之后也不具有可读性,我们无法判断新特征矩阵的特征是从原数据中的什么特征组合而 来,新特征虽然带有原始数据的信息,却已经不是原数据上代表着的含义了。以PCA为代表的降维算法因此是 特征创造(feature creation,或feature construction)的一种。

可以想见,PCA一般不适用于探索特征和标签之间的关系的模型(如线性回归)因为无法解释的新特征和标 签之间的关系不具有意义。在线性回归模型中,我们使用特征选择。

[展开全文]

break语句

break语句可用于while和for循环,用来结束整个循环,当有嵌套循环时,break语句只能跳出最近一层的循环。

continue语句

continue语句用于结束本次循环,继续下一次,多个循环嵌套时,continue也是应用于最近的一层循环。

 

[展开全文]

特征值(具体特征:身高/体重)->目标值(具体要达到的目的:如区分男女)

[展开全文]

for循环和可迭代对象遍历

for循环通常用于可迭代对象的遍历,语法格式如下:

for 变量 in 可迭代对象:

       循环体语句

[展开全文]

循环结构

while循环

 

[展开全文]

选择结构嵌套

一定要控制好不同级别代码块的缩进量。

[展开全文]

多分支选择结构

 

[展开全文]

双分支选择结构

三元条件运算符

条件为真时的值 if   (条件表达式)  else  条件为假时的值

 

[展开全文]

选取超参数threshold

我们怎样知道,方差过滤掉的到底时噪音还是有效特征呢?过滤后模型到底会变好还是会变坏呢?答案是:每个数据集不一样,只能自己去尝试。这里的方差阈值,其实相当于是一个超参数,要选定最优的超参数,我们可以画学 习曲线,找模型效果最好的点。但现实中,我们往往不会这样去做,因为这样会耗费大量的时间。我们只会使用阈值为0或者阈值很小的方差过滤,来为我们优先消除一些明显用不到的特征,然后我们会选择更优的特征选择方法 继续削减特征数量。

方差挑选完毕之后,我们就要考虑下一个问题:相关性了。我们希望选出与标签相关且有意义的特征,因为这样的特征能够为我们提供大量信息。如果特征与标签无关,那只会白白浪费我们的计算内存,可能还会给模型带来噪 音。在sklearn当中,我们有三种常用的方法来评判特征与标签之间的相关性:卡方,F检验,互信息。

卡方过滤是专门针对离散型标签(即分类问题)的相关性过滤。卡方检验类feature_selection.chi2计算每个非负 特征和标签之间的卡方统计量,并依照卡方统计量由高到低为特征排名。再结合feature_selection.SelectKBest 这个可以输入”评分标准“来选出前K个分数最高的特征的类,我们可以借此除去最可能独立于标签,与我们分类目 的无关的特征。

如果卡方检验检测到某个特征中所有的值都相同,会提示我们使用方差先进行方差过滤。并且,刚才我们已 经验证过,当我们使用方差过滤筛选掉一半的特征后,模型的表现时提升的。因此在这里,我们使用threshold=中 位数时完成的方差过滤的数据来做卡方检验。

卡方检验的本质是推测两组数据之间的差异,其检验的原假设是”两组数据是相互独立的”。卡方检验返回卡方值和 P值两个统计量,其中卡方值很难界定有效的范围,而p值,我们一般使用0.01或0.05作为显著性水平,即p值判断 的边界,具体我们可以这样来看:

[展开全文]

特征选择feature_selection

特征创造是一个中很好的方法

在做特征选择之前,有三件非常重要的事:跟数据提供者开会!跟数据提供者开会!跟数据提供者开会!

所以特征选择的第一步,其实是根据我们的目标,用业务常识来选择特征。

一、方差过滤

可能特征中的大多数值都一样,甚至整个特征的取值都相同,那这个特征对于样本区分没有什么作用。所以无 论接下来的特征工程要做什么,都要优先消除方差为0的特征。

当特征是二分类时,特征的取值就是伯努利随机变量,这些变量的方差可以计算为:

其中X是特征矩阵,p是二分类特征中的一类在这个特征中所占的概率。

[展开全文]