3671-路同学-人工智能学科-自然语言处理方向 扫二维码继续学习 二维码时效为半小时

(0评价)
价格: 免费

学生纽约大学研二,自然语言处理方向,目前有一个比较急的基于BERT的任务

python, pytorch,魔性原理几乎零基础

先针对任务需求安排如下针对性课程,任务结束再系统安排学习

 

「第1章」:深度学习工具篇

课程名称:【9555】【Pytorch学习「解锁式学习」】

课程内容:深度学习中的Pytorch框架的讲解于使用。

---考核---(可选择,联系教务老师)

「第2章」:NLP理论进阶篇

课程名称:【3024】【3、NLP人工智能(第三部分)---深度学习Bert进阶「解锁式学习」】

课程内容:课时57有BERT代码讲解

---考核---(可选择,联系教务老师)

「第3章」:NLP项目篇

课程名称:【30322】【2、自然语言处理-基于Seq2Seq、Transformer、BERT的词向量「解锁式学习」】

课程内容:该课程主要实现了NLP的一个整体的项目,讲解了项目导论与中文词向量实践、基于Seq2Seq架构的模型搭建、NLG过程的优化与项目的inference、OOV和Word-repetition问题的改进、基于Transformer特征提取器的改进、BERT在抽取任务中的效果、预训练模型在摘要任务中的改进、项目总结与回顾等知识点

---考核---(可选择,联系教务老师)

「第4章」:NLP项目篇

课程名称:【30323】【3、自然语言处理-基于大规模预训练模型的机器阅读理解「解锁式学习」】

课程内容:该课程讲解了整个项目的开发过程,其中包括了机器阅读理解发展以及解析、常见的机器学习阅读理解模型、BERT与机器阅读理解、BERT的模型变体、其他的机器阅读理解模型、模型的集成与部署、项目总结整体的内容

---考核---(可选择,联系教务老师)

「第5章」:NLP项目篇

课程名称:【30416】【4、(2022)Transformer和预训练模型阶段「解锁式学习」】

课程内容:该课程主要讲解了自注意力机制以及Transformer、Teansformer的代码实现、基于Transformer的闲聊引擎、BERT中的Fine-tuning实例讲解、XLNet、ALBERT的应用、以及XLNet论文讲解。

---考核---(可选择,联系教务老师)