#### 绘制直方图
组数=极差/组距
#### 绘制直方图
组数=极差/组距
#### 条形图
plt.bar 竖着的条形图,线条粗细是width(线条的宽度)
plt.barh 横着的条形图,线条粗细成了height(线条的高低)
plt.grid 是添加网格,alpha是透明度
回归>>>均方误差MSE
#### 散点图是plt.scatter
遗忘知识点:
plt.legend(loc="uppper left",prop=my_font)
###
plt.grid绘制网格
plt.grid(alpha=0.5)#alpha这个代表透明度
plt.plot(linestyle=':')表示折线变成虚线
color=''#线条颜色
linestyle=''#折线的形式
linewidth=5#线条粗细
alpha=0.5#透明度
以上都是放在plt.plot中的
随机森林>>>分类器比较好用吗?
random_state是不同的特征作为初始的节点来产生的不同的树,所以需要不同的特征
袋装法,有放回的随机抽样技术
n个样本组成的自助集
bootstrap>>默认为True
袋外数据(out of bag data,简写为oob)
criterion 不纯度的衡量指标
有基尼系数和信息熵,信息熵的增益
n_estimators 这是森林中树木的数量,基评估器的数量,default-10
实例化-交叉验证
波动本质上是一样的, 但集成算法压倒性的强
集成算法
调参曲线,交叉验证,网格算法 调参方法
base estimator 基评估器
boosting 结合弱评估器一次次对难以评估的对象进行攻克
对特征提问得出决策规则-决策树
# 函数rotation=90旋转的度数
###调整x或者y轴上的参数
1.from matplotlib import pyplot as plt引入函数
2.plt.figure(figsize=(20,8),dpi=80)
#figurezide图片大小,(长,宽),dpi越大越不容易失真
from matplotlib import pyplot as plt x=range(2,26,2) y=[15,13,14,5,17,20,25,26,26,27,22,18,15] #设置图片大小 #figurezide图片大小,(长,宽),dpi越大越不容易失真 plt.figure(figside=(20,8),dpi=80) #绘图 plt.plot(x,y) #设置x轴 _xtick_labels=[i/2 for i in range(2,49)] plt.xticks(_xtick_labels[::3]) #保存 #plt.savefig("./t1.png") #展示 plt.show()
时间复杂度
degree:默认为2,输入的整数越大,升入的维度越高
ordinal:会返回一列特征
什么是正则化路径?
不同a对应的特征向量的参数的取值所对应的矩阵
eps, n_alphas作用?帮助生成很小的a的取值
岭回归和LASSO的评估指标?岭回归是R2,LASSO是MSE
参数alpha_和alphas_?最佳a、自动生成的a
岭回归和LASSO计算交叉验证结果的区别?
ridge.cv_values_.mean(axis=0)#跨行求均值
lasso.mse_path_.mean(axis=1)#跨列求均值
为什么要用LASSO特征选择?LASSO对alpha敏感
如何画一条水平的虚线?
sklearn.linear_model.Ridge(岭回归:线性回归的基础上加上正则项,以处理多重共线性)
1)核心参数alpha:正则项系数,默认1,增大以消除多重共线性带来的影响,但过大会削弱模型本来已有的信息
2)通过调节alpha,模型的泛化能力可能上升。但现实生活中,很少有带有多重共线性的数据,使用岭回归和lasso模型表现一般会降低,
3)泛化能力没有直接衡量指标,只能通过R²和方差来大致判断(var()查看方差,方差反映真实值和预测值的差距)
岭回归解决多重共线性
矩阵的逆存在的条件:行列式不为0
MSE和MSA