3541-吴同学-人工智能学科-数据挖掘方向 扫二维码继续学习 二维码时效为半小时

(0评价)
价格: 免费

###调整x或者y轴上的参数

1.from matplotlib import pyplot as plt引入函数

2.plt.figure(figsize=(20,8),dpi=80)

#figurezide图片大小,(长,宽),dpi越大越不容易失真

 

 

from matplotlib import pyplot as plt

x=range(2,26,2)
y=[15,13,14,5,17,20,25,26,26,27,22,18,15]

#设置图片大小
#figurezide图片大小,(长,宽),dpi越大越不容易失真
plt.figure(figside=(20,8),dpi=80)

#绘图
plt.plot(x,y)

#设置x轴
_xtick_labels=[i/2 for i in range(2,49)]
plt.xticks(_xtick_labels[::3])

#保存

#plt.savefig("./t1.png")
#展示
plt.show()
[展开全文]
3233小风 · 2022-08-30 · 自由式学习 0

数学基础复习:

一、微分(上)

(1)O(n)    o(n)

order---多项式的阶

f(x)=O(g(x)):

f(x)=o(g(x)):

(2)


 

 

 

[展开全文]
2955_sskay · 2022-06-05 · 自由式学习 0

选择行,

选择列

选择行列

 

[展开全文]

hist 直方图

from matplotlib import pyplot as plt

from matplotlib import font_manager

a=[zifuchuan]

plot.hist(a.fenzushu)

细节

计算组数=num_bin= (max(a)-nim(b)//d)

d=5

组数= 极差/组距

x轴的刻度设置

plt.xticks(range(min(a),max(a)+d,d))

plt.show()

图形大小:plt.figure(figsze=(20,8),dpi=80)

{数据}

 

 

 

[展开全文]
  • 导数重要应用
    • 极值定理
    • 泰勒公式
    • 二阶导数-凸函数-最优化

 

[展开全文]

数组的形状

shape即可查看数组的各个维度长度(输出按三维二维依次降低,块、行、个)

reshape方法可以重新设置行列,是有返回值的,而不改变本身

有返回值才会输出

结合shape和reshape可以做到在不清楚维度长度的情况下降维

flatten可以将数组展开变成一维

 

数组的计算

numpy数组对数字进行+*-/计算,是对全部单元进行计算

nan>>not a number 0/0

inf>>infinite x/0

数组对数组进行计算:

不同维度的数组进行计算至少有一个维度的长度相同

广播会在缺失或者长度为1的维度上进行(不同维度的计算本质上是广播)

广播原则:如果两个数组的后缘维度,即从末尾开始算起的维度轴长相符,或者某一方的长度为1,即广播jian'r

[展开全文]
Flying_X · 2022-05-22 · 自由式学习 0

一维数组只有0轴,二维有0、1轴,三维有0、1、2轴

reshape(0,1,2),shape输出(2,1,0)

CSV逗号分隔值文件

numpy的读取文件方法

unpack参数实现行列转置

transpose,T,swapaxes(1,0)方法实现行列转置

[展开全文]
Flying_X · 2022-05-22 · 自由式学习 0

numpy的索引和切片

索引从0开始

2:取得连续多行,[[2,5,6]]多一个[]取得不连续的行

:,1取得单列

:,1:取得连续列

:,[]取得不连续列

取得行列交叉的内容

取得不相邻的点

[展开全文]
Flying_X · 2022-05-15 · 自由式学习 0

这个老师的逻辑能力和语言组织能力真的是匮乏 前言不搭后语 自己把自己绕进去了

[展开全文]

这课程讲的就和拿着稿子照本宣科一样

[展开全文]

特征函数与中心极限定理没看懂

 

[展开全文]

贝叶斯学派

逆概率

pxy = px * py 独立

若不独立

条件概率

P(x|y) = P(xy) /P(y) 

 

[展开全文]

特征选择:方差过滤

```python
from sklearn.feature_selection import VarianceThreshold #特征选择,根据方差进行过滤
def var():
    '''
    特征选择-选择低方差的特征
    :return:None
    '''
    var=VarianceThreshold(threshold=1.0)#保留方差值为1的数值
    data=var.fit_transform([[0,2,0,3],[0,1,4,3],[0,1,1,3]])#三行四列的二维数组
    print(data)
    return None

if __name__=='__main__':  #调用
 var()
```

PCA:主成分分析   

把维度降低,但是数据信息尽可能不损耗

 

 

 

 

 

[展开全文]

文本特征分类功能:

1、文本特征抽取:count

文本分类----如每天的文献分类/文章的分类

2、tf  idf:

2.1 tf:term frequency:词的频率    出现的次数(类似count)

2.2 idf:逆文档频率inverse document frequency

log(总文档数量/该词出现的文档数量)

例:log(数值):输入的数值越小,结果越小

tf*idf 重要性

 

 

 

[展开全文]

文本特征抽取:Count 

功能:

文本分类

情感分析

默认对于单个英文字母或者单词:没有不统计

词组分类器:jie'ba

 

[展开全文]