学生目前在意对相关知识点的系统学习,后续再对NLP做更深入的而学习
===============章节分割线===============
【第1阶段】:基础阶段
【监督方式】:强监督
「第1章」:编程语言篇
课程名称:【3434】【Python基础知识-pycharm版「解锁式学习」】
课程内容: python基础入门知识,对于算法中需要的基础的python做了一个系统的学习。
---考核---(可选择,联系教务老师)
「第2章」:数据结构与算法篇
课程名称:【36】【Python数据结构与算法「解锁式学习」】
课程内容:数据结构入门,主要讲解了堆、栈、链表、快排、二分、树等数据结构与算法,课程末尾将会提供leetcode刷题教程,请需要就业的徒弟务必重视练习。
---考核---(可选择,联系教务老师)
「第3章」:编程语言篇
课程名称:【14281】【机器学习-数据科学库(HM)「解锁式学习」】
课程内容:讲解了目前主要是pandas、numpy、 matpoltlib库的使用。
---考核---(可选择,联系教务老师)
「第4章」:编程语言篇
课程名称:【19638】【数据分析-项目合集「自由式学习」】
课程内容:该课程主要讲解了股票分析案例、人口数据分析案例、美国大选案例、用户数据分析案例四个例子来加深数据分析的例子
---考核---(可选择,联系教务老师)
===============章节分割线===============
【第2阶段】:数学阶段
【监督方式】:弱监督
「第1章」:数学加强篇
课程名称:【19968】【机器学习中的数学基础-53集「解锁式学习」】
课程内容:对机器学习中的数学中的微分[极限、导数、费马定理、泰勒、多元函数、偏导数、方向导数、梯度、链式法制、拉格朗日],线性代数[向量、矩阵、张量、行列式、线性方程组、矩阵分解],概率[随机变量、概率分布、贝叶斯定理、期望、方差、大数定律、特征函数、中心极限定理、统计学基础、极大似然估计、zuida后验估计、蒙特卡罗方法、Bootstrap方法、EM算法],最优化方法[最速下降法、共轭梯度法、牛顿法、拟牛顿法、约束非线性优化、KKT条件]等数学知识点的复习
---考核---(可选择,联系教务老师)
===============章节分割线===============
【第3阶段】:机器学习阶段
【监督方式】:强监督
「第1章」:机器学习基础篇
课程名称:【3211】【机器学习算法基础(基础机器学习课程)「解锁式学习」】
课程内容:机器学习基础算法的讲解,偏向于实现,对底层原理没有进行过多的阐述。
---考核---(可选择,联系教务老师)
「第2章」:机器学习进阶篇
课程名称:【33】【机器学习---算法进阶「解锁式学习」】
课程内容:对机器学习深入的讲解,利用了大量的数学公式进行推导,足以应对工厂面试过程中问到的算法的底层远离的实现。比较难理解,需要多次吸收强化。如对该课程有不适应,请及时跟教务老师联系。
---考核---(可选择,联系教务老师)
「第3章」:机器学习工具篇
课程名称:【24941】【机器学习-Sklearn(第三版)「解锁式学习」】
课程内容:该课程主要讲解了经典算法决策树、随机森林、特征工程数据预处理、经典算法降维算法PCA、逻辑回归、聚类算法KMeans、支持向量机SVM、线性回归、朴素贝叶斯、 XGBoost及其相关案例
---考核---(可选择,联系教务老师)
「第4章」:NLP理论基础篇
课程名称:【3425】【NLP自然语言处理基础课程「解锁式学习」】
课程内容:LDA、语言模型结合朴素贝叶斯、基于统计的翻译系统、隐马尔可夫模型、词向量等知识的讲解。
---考核---(可选择,联系教务老师)
===============章节分割线===============
【第4阶段】:AI项目合集第一阶段
【监督方式】:强监督
「第1章」:机器学习练习系列篇
课程名称:【19632】【5、机器学习练习- 聚类算法kmeans和MeanShift-聚类消费者画像分析项目「解锁式学习」】
课程内容:该课程主要是机器学习算法上面的练习
---考核---(可选择,联系教务老师)
「第2章」:机器学习练习系列篇
课程名称:【19634】【7、机器学习练习-lighGBM算法-交易欺诈检测实战「解锁式学习」】
课程内容:该课程主要是机器学习算法上面的练习
---考核---(可选择,联系教务老师)
===============章节分割线===============
【第5阶段】:深度学习阶段
【监督方式】:强监督
「第1章」:深度学习基础篇
课程名称:【21964】【深度学习-【2020版】【深版】「数据挖掘-解锁式学习」】
课程内容:深度学习深入知识的讲解,对神经网络等深度学习常用的算法进行了讲解
---考核---(可选择,联系教务老师)
「第2章」:NLP项目篇
课程名称:【3266】【NLP到Word2Vec实战「解锁式学习」】
课程内容:自然语言处理阶段的Word2Vec的讲解
---考核---(可选择,联系教务老师)
「第3章」:NLP理论基础篇
课程名称:【30325】【1、自然语言处理-NLP核心能力提升「自由式学习」】
课程内容:该课程主要是讲解语言模型与语法树、爬虫、搜索引擎与自动路径决策、动态规划与编辑距离、自然语言初步理解、经典的机器学习算法、深度学习、非监督、半监督、主动学习、word2vec、CNN卷积神经网络、RNN循环神经网络、Transformer与BERT大规模预训练问题、面向服务的智能客服机器人与新闻自动生成摘要的案例等知识体系
---考核---(可选择,联系教务老师)
「第4章」:NLP项目篇
课程名称:【27493】【4、PyTorch_LSTM文本生成「解锁式学习」】
课程内容:该课程主要讲解Pytorch使用LSTM生成字符集的操作
---考核---(可选择,联系教务老师)
「第5章」:NLP项目篇
课程名称:【25083】【PyTorch-情感分类「解锁式学习」】
课程内容:等待介绍文本
---考核---(可选择,联系教务老师)