岭回归解决多重共线性
矩阵的逆存在的条件:行列式不为0
岭回归解决多重共线性
矩阵的逆存在的条件:行列式不为0
MSE和MSA
2、衡量是否拟合了足够的信息:R²,越接近1越好
1) from sklearn.metrics import r2_score
r2_score(ytest,yhat)
2) reg.score(xtest,ytest)
3) cross_val_score(reg,x,y,cv=10,scoring="r2").mean()
R²为负说明模型拟合十分糟糕
如何用sklearn.metrics中的roc_curve函数计算
y_true:真实标签
y_score:decision_function返回的距离or置信度分数or正类样本的概率
pos_label:填上1,表示1为正样本
返回FPR,recall和阈值
如何计算auc?
from sklearn.metrics import roc_auc_score
roc_auc_score(y,clf.decision_function(x))
ROC曲线上如何画x=y的直线?
plt.plot([0,1],[0,1],linestyle="--",c="black")
SVM实现概率预测:重要参数probabiity,接口decision_function
重要参数probabiity:布尔值,默认为False,是否启用概率估计,启用后可以调用predict_prob和predict_log_proba接口。该功能会减慢SVM运算速度
接口decision_function返回SVM的置信度(衡量样本有多大可能属于某一类)
对二维数据decision_function生成距离,是一维,表示每个点到决策边界的距离,predict_proba生成两列的概率,是二维
SVM实现概率预测
二分类SVC中的样本不均衡问题:重要参数class_weight,接口fit中的参数sample_weight
class_weight:默认为None,可输入字典或balanced(SVM通过在C上加权重影响样本均衡)
sample_weight:数组,必须对应输入fit特征矩阵的每个样本
分类模型天生倾向多数的类
SVM样本总量对运算速度影响大
在数据空间中找出一个超平面作为决策边界,利用决策边界对数据进行分类,决策边界是比数据空间小一维的空间
重要参数C
权衡”训练样本正确分类“和”决策函数边际最大化“(边际更宽的决策边际更好)
浮点数,默认为1,必须大于等于0
调参:一般从0开始调,C越大,决策边界越小
边际更宽的决策边际更好
找最大边际和被分错样本之间的平衡
poly通常用网格搜索调,rbf
与 参数
1) degree:默认3,只在poly时可选
2) gamma:默认auto,除linear都可用
3) coef0:默认0,只在poly,sigmoid有效
np.c_类似np.vstack的功能
ax.text为图像上放上文字
如何使用np.mgrid生成网格?
np.mgrid合并np.linspace和np.meshgrid
xx,yy=np.mgrid[xmin:xmax:200j,ymin:ymax:200j]
[起始值:结束值:步长]
200j表示起始值和结束值之间创建200个点,结束值包含在内
三、非线性SVM与核函数
1、核变换:把数据投影到高维空间中,寻找能将数据完美分割的超平面。
2、核函数使得 高维空间的任意两个向量的点积一定可以用低维空间这两个向量的某种计算表示
3、重要参数kernel:
1)"linear":线性核函数,线性
2) "poly": 多项式核,偏线性
3) "sigmoid": 双曲正切核,非线性
4) "rbf": 高斯径向基,偏非线性
del 删除变量
intercept_
线性回归
一、概述
回归的预测结果是连续型变量
二、多元(多个特征)线性回归LinearRegression
1、linear_model.LinearRegression使用的损失函数:SSE(误差平方和)或RSS(残差平方和)
2、最小二乘法:
1)通过最小化真实值与预测值之间的RSS来求解参数
2)最小二乘法求解线性回归是一种无偏估计的方法,要求标签必须服从正态分布
三、回归类的模型评估指标
四、多重共线性:岭回归和Lasso
五、非线性问题:多项式回归
逆矩阵存在的充分必要条件是特征矩阵不存在多重共线性
线性回归
一、概述
回归的预测结果是连续型变量
二、多元(多个特征)线性回归LinearRegression
1、linear_model.LinearRegression使用的损失函数:SSE(误差平方和)或RSS(残差平方和)
三、回归类的模型评估指标
四、多重共线性:岭回归和Lasso
五、非线性问题:多项式回归
线性回归
一、概述
二、多元线性回归LinearRegression
三、回归类的模型评估指标
四、多重共线性:岭回归和Lasso
五、非线性问题:多项式回归