3349-郭腾旺-人工智能学科-就业:是 扫二维码继续学习 二维码时效为半小时

(0评价)
价格: 免费

ROC曲线

衡量在尽量捕捉少数类时,误伤多数类的情况如何变化(recall与

[展开全文]
3077_Yuki · 2022-07-12 · 自由式学习 0

混淆矩阵

二分类中极为有效,少数类为正例,多数类为负例

 

1)真实值在预测值之前,两数字相同则预测正确

2)所有指标范围在[0,1],11、00为分子的指标越接近1越好,01、10分子的指标越接近0越好

3)sklearn中没有特异度和假正率,需要自己计算

6个指标

1、准确率Accuracy

2、捕捉少数类

1)精确度Precision(查准率):

越低,误伤了过多的多数类,衡量 多数类判错付出的成本

将多数类判错成本高昂时,追求高精确度

2)召回率Recall(敏感度、真正率、查全率)

越高,捕捉出了越多的少数类

不计一切代价找出少数类,追求高召回率

召回率和精确度此消彼长,代表捕捉少数类的需求和不误伤多数类需求的平衡

3)F1 measure:范围[0,1],越接近1越好,代表精确度和召回率越高

3、判错多数类

1)特异度specificity(真负率

衡量一个模型把多数类判断正确的能力

2)假正率false positive rate=1-特异度

衡量一个模型把多数类判断错误的能力

[展开全文]
3077_Yuki · 2022-07-12 · 自由式学习 0

SVC模型评估指标

1、混淆矩阵

二分类中极为有效,少数类为正例,多数类为负例

 

1)真实值在预测值之前,两数字相同则预测正确

2)所有指标范围在[0,1],11、00为分子的指标越接近1越好,01、10分子的指标越接近0越好

6个指标

1、准确率Accuracy

2、捕捉少数类

1)精确度Precision(查准率):

越低,误伤了过多的多数类,衡量 多数类判错付出的成本

将多数类判错成本高昂时,追求高精确度

2)召回率Recall(敏感度、真正率、查全率)

越高,捕捉出了越多的少数类

不计一切代价找出少数类,追求高召回率

召回率和精确度此消彼长,代表捕捉少数类的需求和不误伤多数类需求的平衡

3)F1 measure:范围[0,1],越接近1越好,代表精确度和召回率越高

3、判错多数类

1)特异度specificity(真负率

衡量一个模型把多数类判断正确的能力

2)假正率false positive rate=1-特异度

衡量一个模型把多数类判断错误的能力

 

[展开全文]
3077_Yuki · 2022-07-12 · 自由式学习 0

SVC模型评估指标

1、混淆矩阵

二分类中极为有效,少数类为正例,多数类为负例

 

1)真实值在预测值之前,两数字相同则预测正确

2)所有指标范围在[0,1],11、00为分子的指标越接近1越好,01、10分子的指标越接近0越好

6个指标

1、准确率Accuracy

2、

1)精确度Precision(查准率):

越低,误伤了过多的多数类,衡量 多数类判错付出的成本

将多数类判错成本高昂时,追求高精确度

2)召回率Recall(敏感度、真正率、查全率)

越高,捕捉出了越多的少数类

不计一切代价找出少数类,追求高召回率

召回率和精确度此消彼长,代表捕捉少数类的需求和不误伤多数类需求的平衡

3)F1 measure:范围[0,1],越接近1越好,代表精确度和召回率越高

[展开全文]
3077_Yuki · 2022-07-12 · 自由式学习 0

SVC模型评估指标

1、混淆矩阵

二分类中极为有效,少数类为正例,多数类为负例

 

1)真实值在预测值之前,两数字相同则预测正确

2)所有指标范围在[0,1],11、00为分子的指标越接近1越好,01、10分子的指标越接近0越好

6个指标

1、准确率Accuracy

2、精确度Precision(查准率):

越低,误伤了过多的多数类,衡量 多数类判错付出的成本

将多数类判错成本高昂 

[展开全文]
3077_Yuki · 2022-07-12 · 自由式学习 0

SVC模型评估指标

1、混淆矩阵

二分类中极为有效,少数类为正例,多数类为负例

 

1)真实值在预测值之前,两数字相同则预测正确

2)所有指标范围在[0,1],11、00为分子的指标越接近1越好,01、10分子的指标越接近0越好

3)6个指标

准确率Accuracy

 

[展开全文]
3077_Yuki · 2022-07-12 · 自由式学习 0

核变换:把数据投影到

[展开全文]
3077_Yuki · 2022-07-12 · 自由式学习 0

1、函数contour([x,y],z,[levels])用来绘制等高线

x,y:平面所有点横纵坐标,必须是二维,选填

z表示x,y对应坐标点的高度,必填

levels:默认显示所有等高线,可不填,填写整数n显示n个数据区间,填写数组或列表(递增顺序)显示对应高度等高线

2、绘制等高线的步骤:

制作网格

[展开全文]
3077_Yuki · 2022-07-11 · 自由式学习 0

SVM支持向量机

一、概述

SVM功能强大,可以进行有监督学习、无监督学习、半监督学习

SVM如何工作?在分布中找到一个超平面(比所在空间小一维,是一个空间的子空间)作为决策边界,使模型的分类误差尽可能小。

支持向量机是一个最优化问题,目的是找出边际最大的决策边界(通过损失函数)。边际(d)是超平面往两边移动,直到碰到最近的样本停下得来的。拥有更大边际的决策边界,在分类中泛化误差更小,边际很小会过拟合。因此,支持向量机又叫做最大边际分类器。

二、sklearn.svm.SVC

1、线性SVM的损失函数

[展开全文]
3077_Yuki · 2022-07-11 · 自由式学习 0

SVM支持向量机

一、概述

SVM功能强大,可以进行有监督学习、无监督学习、半监督学习

SVM如何工作?在分布中找到一个超平面(比所在空间小一维,是一个空间的子空间)作为决策边界,使模型的分类误差尽可能小。

支持向量机是一个最优化问题,目的是找出边际最大的决策边界(通过损失函数)。边际(d)是超平面往两边移动,直到碰到最近的样本停下得来的。拥有更大边际的决策边界,在分类中泛化误差更小,边际很小会过拟合。因此,支持向量机又叫做最大边际分类器。

二、

[展开全文]
3077_Yuki · 2022-07-11 · 自由式学习 0

SVM支持向量机

一、概述

可以进行有监督学习、无监督学习、半监督学习

二、

[展开全文]
3077_Yuki · 2022-07-11 · 自由式学习 0

矢量量化本质是一种降维应用,特征选择降维:选取贡献大的特征;PCA降维:聚合信息;矢量量化降维:同等样本量上(不改变样本和特征数目)压缩信息大小

[展开全文]
3077_Yuki · 2022-07-11 · 自由式学习 0

3)重要参数max_iter&tol:让迭代提前停下来,数据量太大可以使用

max_iter:默认300,单次运行kmeans算法的最大迭代次数

tol:默认1e-4,两个迭代之间inertia下降的量,若小于tol设定的值,迭代就会停下

[展开全文]
3077_Yuki · 2022-07-11 · 自由式学习 0

2)重要参数init&random_state&n_init(初始质心相关)质心选择的好,模型收敛更快,迭代次数更少

init:默认"k-means++",决定初始化方式,通常不改

random_state:控制每次初始质心的位置相同,不设置则会在每个随机数种子下运行多次,选择结果最好的随机数种子

n_init:默认为10,每个随机数种子运行次数,希望更精确则增大

 

重要属性n_iter_:迭代次数

[展开全文]
3077_Yuki · 2022-07-11 · 自由式学习 0

三、聚类算模型的评估指标

思路:由于KMeans目标是簇内差异小,簇外差异大,因此可以通过衡量簇内差异来衡量聚类效果

1、标签y已知(最好用分类)

互信息分、V-measure、调整兰德系数,三者都是越高越好,前两个取值[0,1],最后一个取值[-1,1]

2、标签y未知:

1)轮廓系数

1)评价簇内稠密程度、簇间离散程度。样本与所在簇内其他样本相似度为a,其他簇内样本相似度为b,用平均距离计算。a越小,b越大,越好。

2)轮廓系数是对每一个样本进行计算,公式为s=(b-a)/max(a,b),范围:(-1,1)

轮廓系数处于(0,1):聚类好,越接近1越好

处于(-1,0):聚类不好

3)使用sklearn.metrics中的silhouette_score计算,返回所有轮廓系数的均值,silhouette_samples返回每个样本的轮廓系数

from sklearn.metrics import silhouette_score
silhouette_score(x,y_pred)

2)卡林斯基-哈拉巴斯指数CHI

from sklearn.metrics import calinski_harabasz_score

越高越好,比轮廓系数快,数据量大时使用

3)戴维斯-布尔丁指数

4)权变矩阵

[展开全文]
3077_Yuki · 2022-07-10 · 自由式学习 0

三、聚类算模型的评估指标

思路:由于KMeans目标是簇内差异小,簇外差异大,因此可以通过衡量簇内差异来衡量聚类效果

1、标签y已知(最好用分类)

互信息分、V-measure、调整兰德系数,三者都是越高越好,前两个取值[0,1],最后一个取值[-1,1]

2、标签y未知:轮廓系数

1)评价簇内稠密程度、簇间离散程度。样本与所在簇内其他样本相似度为a,其他簇内样本相似度为b,用平均距离计算。a越小,b越大,越好。

2)轮廓系数是对每一个样本进行计算,公式为s=(b-a)/max(a,b),范围:(-1,1)

轮廓系数处于(0,1):聚类好,越接近1越好

处于(-1,0):聚类不好

3)使用sklearn.metrics中的silhouette_score计算,返回所有轮廓系数的均值,silhouette_samples返回每个样本的轮廓系数

from sklearn.metrics import silhouette_score
silhouette_score(x,y_pred)

[展开全文]
3077_Yuki · 2022-07-10 · 自由式学习 0

三、聚类算模型的评估指标

思路:由于KMeans目标是簇内差异小,簇外差异大,因此可以通过衡量簇内差异来衡量聚类效果

1、标签y已知(最好用分类)

互信息分、V-measure、调整兰德系数,三者都是越高越好,前两个取值[0,1],最后一个取值[-1,1]

2、标签y未知:轮廓系数

1)评价簇内稠密程度、簇间离散程度。样本与所在簇内其他样本相似度为a,其他簇内样本相似度为b,用平均距离计算。a越小,b越大,越好。

2)轮廓系数是对每一个样本进行计算,公式为s=(b-a)/max(a,b),范围:(-1,1)

轮廓系数处于(0,1):聚类好,越接近1越好

处于(-1,0):聚类不好

 

[展开全文]
3077_Yuki · 2022-07-10 · 自由式学习 0

一、概述

1、无监督学习:训练时只需要一个特征矩阵x,不需要标签y,例如PCA

2、聚类(无监督分类)VS 分类

1)在已经知晓的类别上,给未知的样本标上标签(分类);在完全不知道标签的情况下,探索分布上的分类(聚类)

2)分类结果确定,聚类结果不确定

3、sklearn中的聚类算法(类和函数两种表现形式)输入数据可以是标准特征矩阵,也可以是相似性矩阵(行和列都是n_samples),可以使用sklearn.metric.pairwise模块中函数获取相似性矩阵

4、簇中所有数据坐标均值为这个簇的质心坐标,簇k是一个超参数,kmeans追求的是能让簇内平方和inertia最小的质心(最优化问题,逻辑回归也是最优化问题)

5、KMeans算法时间复杂度为O(k*n*T),k为簇数,n为样本数,T为迭代次数,但这种算法很慢,但是最快的聚类算法,

二、sklearn.cluster.KMeans

1、重要参数

1)n_clusters:分几个簇,可以通过画图确定分几个

2、重要属性

1)labels_,查看聚好的类别,每个样本对应的类

2)cluster_centers_。查看质心

3)inertia_,查看总距离平方和。分的簇越多,inertia越低,可以降低至0。k值一定的情况下,inertia越低,聚类效果越好。

3、接口fit_predict(x):fit后使用,将x分到已经聚好的类中

1)cluster=KMeans(n_clusters=3,random_state=0).fit(x)

cluster.labels_

cluster=KMeans(n_clusters=3,random_state=0).fit(x)

cluster.fit_predict(x)

结果相同

2)为什么需要fit_predict(x)?数据量太大时,可以先切出一点数据训练,找质心,其它数据用这个接口预测,减少计算量,结果不一样但可以接近。

cluster_smallsub=KMeans(n_clusters=3,random_state=0).fit(x[:200])
y_pred_=cluster_smallsub.predict(x[200:])

有一些算法天生没有损失函数(衡量拟合效果)

聚类算法不需要调用接口transform(),.fit(x)后求出质心,聚类已经完成,但之后可以用

RFM模型,漏斗分析,AARRR模型

[展开全文]
3077_Yuki · 2022-07-10 · 自由式学习 0