3258-张毅-Python学科-数据分析-就业:是 扫二维码继续学习 二维码时效为半小时

(0评价)
价格: 免费

1.安装与开发环境

  • 安装python时候可开放所有权限
  • 勾选环境变量选项
  •  

 

[展开全文]

支持向量机的分类方法,是在这组分布中找出一个超平面作为决策边界,使模型在数据上的 分类误差尽量接近于小,尤其是在未知数据集上的分类误差(泛化误差)尽量小。

决策边界一侧的所有点在分类为属于一个类,而另一侧的所有点分类属于另一个类。如果我们能够找出决策边界, 分类问题就可以变成探讨每个样本对于决策边界而言的相对位置。比如上面的数据分布,我们很容易就可以在方块 和圆的中间画出一条线,并让所有落在直线左边的样本被分类为方块,在直线右边的样本被分类为圆。如果把数据 当作我们的训练集,只要直线的一边只有一种类型的数据,就没有分类错误,我们的训练误差就会为0。

但是,对于一个数据集来说,让训练误差为0的决策边界可以有无数条。

[展开全文]

支持向量机(SVM,也称为支持向量网络),是机器学习中获得关注最多的算法没有之一。它源于统计学习理论, 是我们除了集成算法之外,接触的第一个强学习器。它有多强呢?

从实际应用来看,SVM在各种实际问题中都表现非常优秀。它在手写识别数字和人脸识别中应用广泛,在文本和超 文本的分类中举足轻重,因为SVM可以大量减少标准归纳(standard inductive)和转换设置(transductive settings)中对标记训练实例的需求。同时,SVM也被用来执行图像的分类,并用于图像分割系统。。除此之外,生物学和许多其他科学都是SVM的青睐者,SVM现在已经广泛被用于蛋白质分类,现 在化合物分类的业界平均水平可以达到90%以上的准确率。在生物科学的尖端研究中,人们还使用支持向量机来识 别用于模型预测的各种特征,以找出各种基因表现结果的影响因素。

从学术的角度来看,SVM是最接近深度学习的机器学习算法。线性SVM可以看成是神经网络的单个神经元(虽然损 失函数与神经网络不同),非线性的SVM则与两层的神经网络相当,非线性的SVM中如果添加多个核函数,则可以 模仿多层的神经网络。

[展开全文]

类方法:从属于“类对象”的方法,格式如下:

          @classmethod

           def  类对象(cls,[,形参列表]):

                 函数体

要点如下:

(1)@classmathod必须位于方法上面一行

(2)第一个cls必须有;cls指的就是“类对象”本身;

(3)调用类方法格式:“类名.类方法名(参数列表)”,不需要给cls传值。

 

[展开全文]

实例方法(从属于实例对象)

def 方法名(self,[形参列表]):

       函数体

[展开全文]

实例属性:从属于实例对象,也成为实例变量。

(1)实例属性一般在__init__()方法中通过如下代码定义:

          self.实例属性名=初始值

(2)在本类的其他实例方法中,也是通过self进行访问:

          self.实例属性名

(3)创建实例对象后,通过实例对象进行访问:

         obj01=类名()         #创建对象,调用__init__()初始化属性

          obj01.实例属性名=值    #可以给已有属性赋值,也可以新加属性

 

[展开全文]

构造函数__init__():初始化实例对象的实例属性。

Python对象包含三个部分=id、type、value

只要是类中的方法参数第一个都是self,通过类名()来调用构造函数

[展开全文]

面向对象

Python支持面向过程、面向对象、函数式编程等多种编程范式。

 

[展开全文]

LEGB规则

Local:函数或者类的方法内部

 

[展开全文]

nonlocal关键字

nonlocal 用来声明外部的局部变量

global 用来声明全局变量

 

[展开全文]

嵌套函数:在函数内部定义的函数

 

[展开全文]

递归函数:在函数体内直接或者间接的自己调用自己。

(1)终止条件:表示递归什么时候结束,一般用于返回值,不再调用自己。

(2)递归步骤:把第n步的值和第n-1步相关联。

[展开全文]

lambda表达式和匿名函数

基本语法:

    lambda arg1,arg2,arg3...:<表达式>

[展开全文]

可变参数(一个*为元组,**为字典)

强制命名参数(当带星号的“可变参数”后面增加新的参数,必须是强制命名参数)

[展开全文]

参数的几种类型

位置参数

默认值参数

命名参数

[展开全文]

传递不可变对象:浅拷贝

 

[展开全文]