intercept_
intercept_
线性回归
一、概述
回归的预测结果是连续型变量
二、多元(多个特征)线性回归LinearRegression
1、linear_model.LinearRegression使用的损失函数:SSE(误差平方和)或RSS(残差平方和)
2、最小二乘法:
1)通过最小化真实值与预测值之间的RSS来求解参数
2)最小二乘法求解线性回归是一种无偏估计的方法,要求标签必须服从正态分布
三、回归类的模型评估指标
四、多重共线性:岭回归和Lasso
五、非线性问题:多项式回归
逆矩阵存在的充分必要条件是特征矩阵不存在多重共线性
线性回归
一、概述
回归的预测结果是连续型变量
二、多元(多个特征)线性回归LinearRegression
1、linear_model.LinearRegression使用的损失函数:SSE(误差平方和)或RSS(残差平方和)
三、回归类的模型评估指标
四、多重共线性:岭回归和Lasso
五、非线性问题:多项式回归
线性回归
一、概述
二、多元线性回归LinearRegression
三、回归类的模型评估指标
四、多重共线性:岭回归和Lasso
五、非线性问题:多项式回归
线性回归
一、概述
二、多元线性回归LinearRegression
三、回归类的模型评估指标
四、多重共线性:岭回归和Lasso
五、非线性问题:多项式回归
ROC曲线
衡量在尽量捕捉少数类时,误伤多数类的情况如何变化(recall与
混淆矩阵
二分类中极为有效,少数类为正例,多数类为负例
1)真实值在预测值之前,两数字相同则预测正确
2)所有指标范围在[0,1],11、00为分子的指标越接近1越好,01、10分子的指标越接近0越好
3)sklearn中没有特异度和假正率,需要自己计算
6个指标
1、准确率Accuracy
2、捕捉少数类
1)精确度Precision(查准率):
越低,误伤了过多的多数类,衡量 多数类判错付出的成本
将多数类判错成本高昂时,追求高精确度
2)召回率Recall(敏感度、真正率、查全率)
越高,捕捉出了越多的少数类
不计一切代价找出少数类,追求高召回率
召回率和精确度此消彼长,代表捕捉少数类的需求和不误伤多数类需求的平衡
3)F1 measure:范围[0,1],越接近1越好,代表精确度和召回率越高
3、判错多数类
1)特异度specificity(真负率)
衡量一个模型把多数类判断正确的能力
2)假正率false positive rate=1-特异度
衡量一个模型把多数类判断错误的能力
SVC模型评估指标
1、混淆矩阵
二分类中极为有效,少数类为正例,多数类为负例
1)真实值在预测值之前,两数字相同则预测正确
2)所有指标范围在[0,1],11、00为分子的指标越接近1越好,01、10分子的指标越接近0越好
6个指标
1、准确率Accuracy
2、捕捉少数类
1)精确度Precision(查准率):
越低,误伤了过多的多数类,衡量 多数类判错付出的成本
将多数类判错成本高昂时,追求高精确度
2)召回率Recall(敏感度、真正率、查全率)
越高,捕捉出了越多的少数类
不计一切代价找出少数类,追求高召回率
召回率和精确度此消彼长,代表捕捉少数类的需求和不误伤多数类需求的平衡
3)F1 measure:范围[0,1],越接近1越好,代表精确度和召回率越高
3、判错多数类
1)特异度specificity(真负率)
衡量一个模型把多数类判断正确的能力
2)假正率false positive rate=1-特异度
衡量一个模型把多数类判断错误的能力
SVC模型评估指标
1、混淆矩阵
二分类中极为有效,少数类为正例,多数类为负例
1)真实值在预测值之前,两数字相同则预测正确
2)所有指标范围在[0,1],11、00为分子的指标越接近1越好,01、10分子的指标越接近0越好
6个指标
1、准确率Accuracy
2、
1)精确度Precision(查准率):
越低,误伤了过多的多数类,衡量 多数类判错付出的成本
将多数类判错成本高昂时,追求高精确度
2)召回率Recall(敏感度、真正率、查全率)
越高,捕捉出了越多的少数类
不计一切代价找出少数类,追求高召回率
召回率和精确度此消彼长,代表捕捉少数类的需求和不误伤多数类需求的平衡
3)F1 measure:范围[0,1],越接近1越好,代表精确度和召回率越高
SVC模型评估指标
1、混淆矩阵
二分类中极为有效,少数类为正例,多数类为负例
1)真实值在预测值之前,两数字相同则预测正确
2)所有指标范围在[0,1],11、00为分子的指标越接近1越好,01、10分子的指标越接近0越好
6个指标
1、准确率Accuracy
2、精确度Precision(查准率):
越低,误伤了过多的多数类,衡量 多数类判错付出的成本
将多数类判错成本高昂
SVC模型评估指标
1、混淆矩阵
二分类中极为有效,少数类为正例,多数类为负例
1)真实值在预测值之前,两数字相同则预测正确
2)所有指标范围在[0,1],11、00为分子的指标越接近1越好,01、10分子的指标越接近0越好
3)6个指标
准确率Accuracy
SVC模型评估指标
核变换:把数据投影到
1、函数contour([x,y],z,[levels])用来绘制等高线
x,y:平面所有点横纵坐标,必须是二维,选填
z表示x,y对应坐标点的高度,必填
levels:默认显示所有等高线,可不填,填写整数n显示n个数据区间,填写数组或列表(递增顺序)显示对应高度等高线
2、绘制等高线的步骤:
制作网格
SVM支持向量机
一、概述
SVM功能强大,可以进行有监督学习、无监督学习、半监督学习
SVM如何工作?在分布中找到一个超平面(比所在空间小一维,是一个空间的子空间)作为决策边界,使模型的分类误差尽可能小。
支持向量机是一个最优化问题,目的是找出边际最大的决策边界(通过损失函数)。边际(d)是超平面往两边移动,直到碰到最近的样本停下得来的。拥有更大边际的决策边界,在分类中泛化误差更小,边际很小会过拟合。因此,支持向量机又叫做最大边际分类器。
二、sklearn.svm.SVC
1、线性SVM的损失函数
SVM支持向量机
一、概述
SVM功能强大,可以进行有监督学习、无监督学习、半监督学习
SVM如何工作?在分布中找到一个超平面(比所在空间小一维,是一个空间的子空间)作为决策边界,使模型的分类误差尽可能小。
支持向量机是一个最优化问题,目的是找出边际最大的决策边界(通过损失函数)。边际(d)是超平面往两边移动,直到碰到最近的样本停下得来的。拥有更大边际的决策边界,在分类中泛化误差更小,边际很小会过拟合。因此,支持向量机又叫做最大边际分类器。
二、
SVM支持向量机
一、概述
可以进行有监督学习、无监督学习、半监督学习
二、
矢量量化本质是一种降维应用,特征选择降维:选取贡献大的特征;PCA降维:聚合信息;矢量量化降维:同等样本量上(不改变样本和特征数目)压缩信息大小
3)重要参数max_iter&tol:让迭代提前停下来,数据量太大可以使用
max_iter:默认300,单次运行kmeans算法的最大迭代次数
tol:默认1e-4,两个迭代之间inertia下降的量,若小于tol设定的值,迭代就会停下