【2771】【尚同学】
【个人情况】:数据科学专业大四,短期有小项目需求。数学和编程基础都比较好,机器学习有一定基础和实践,但不扎实;深度学习基础薄弱,自然语言处理几乎零基础。每天学习3-4小时。
【学习目标】:短期针对项目选题进行建议,小项目预期进行一个月;之后再系统学。
【备注】:一年,课程先将自然语言处理相关提前,帮助学生选择课题,完成小项目后调整顺序
【学习方向】:自然语言处理
【是否需要就业】:否
【目标就业地点】:一线城市
【课程学习顺序】:以老师发的学习思路稳住
(按照顺序学习即可,有问题随时跟老师联系调整)
【学员课程安排】:有任何疑问,在群里随时艾特或者ding教务老师和电话测评的老师!尽快解决,达到当前阶段没有疑问为止。
===============章节分割线===============
【第1阶段】:自然语言处理阶段
【监督方式】:强监督
「第1章」:NLP理论基础篇
课程名称:【2924】【1、NLP人工智能(第一部分)---自然语言处理基础必备「解锁式学习」】
课程内容:自然语言处理方向中对一些基础的自然语言处理的讲解,特征选取以及词向量等,其中还有对机器学习做的一些简单的复习知识。可以跳过
---考核---(可选择,联系教务老师)
「第2章」:NLP理论基础篇
课程名称:【3015】【1、Python人工智能项目进阶(第一部分)-深度学习进阶提高「解锁式学习」】
课程内容:深度学习常用框架知识的讲解,深层神经网络、浅层神经网络的算法、卷积神经网络算法
---考核---(可选择,联系教务老师)
「第3章」:NLP理论基础篇
课程名称:【3425】【NLP自然语言处理基础课程「解锁式学习」】
课程内容:LDA、语言模型结合朴素贝叶斯、基于统计的翻译系统、隐马尔可夫模型、词向量等知识的讲解。
---考核---(可选择,联系教务老师)
「第4章」:NLP项目篇
课程名称:【3266】【NLP到Word2Vec实战「解锁式学习」】
课程内容:自然语言处理阶段的Word2Vec的讲解
---考核---(可选择,联系教务老师)
「第5章」:NLP理论进阶篇
课程名称:【3024】【3、NLP人工智能(第三部分)---深度学习Bert进阶「解锁式学习」】
课程内容:深度学习中的文本匹配以及语料库的匹配等自然语言处理结合的课程。
---考核---(可选择,联系教务老师))
「第6章」:NLP理论基础篇
课程名称:【30325】【1、自然语言处理-NLP核心能力提升「自由式学习」】
课程内容:该课程主要是讲解语言模型与语法树、爬虫、搜索引擎与自动路径决策、动态规划与编辑距离、自然语言初步理解、经典的机器学习算法、深度学习、非监督、半监督、主动学习、word2vec、CNN卷积神经网络、RNN循环神经网络、Transformer与BERT大规模预训练问题、面向服务的智能客服机器人与新闻自动生成摘要的案例等知识体系
---考核---(可选择,联系教务老师)
「第7章」:NLP项目篇
课程名称:【5052】【自然语言序列模型实战「自由式学习」】
课程内容:该课程对于自然语言处理模型进行概述,包含语言模型,神经序列模型,FSM,CRF的学习
---考核---(可选择,联系教务老师)
「第8章」:NLP项目篇
课程名称:【27493】【4、PyTorch_LSTM文本生成「解锁式学习」】
课程内容:该课程主要讲解Pytorch使用LSTM生成字符集的操作
---考核---(可选择,联系教务老师)
「第9章」:NLP项目篇
课程名称:【25100】【PyTorch-情感分类「自由式学习」】
课程内容:等待介绍文本
---考核---(可选择,联系教务老师)
「第10章」:NLP项目篇
课程名称:【30328】【2、自然语言处理-基于Seq2Seq、Transformer、BERT的词向量「自由式学习」】
课程内容:该课程主要实现了NLP的一个整体的项目,讲解了项目导论与中文词向量实践、基于Seq2Seq架构的模型搭建、NLG过程的优化与项目的inference、OOV和Word-repetition问题的改进、基于Transformer特征提取器的改进、BERT在抽取任务中的效果、预训练模型在摘要任务中的改进、项目总结与回顾等知识点
---考核---(可选择,联系教务老师)
「第11章」:NLP项目篇
课程名称:【30326】【3、自然语言处理-基于大规模预训练模型的机器阅读理解「自由式学习」】
课程内容:该课程讲解了整个项目的开发过程,其中包括了机器阅读理解发展以及解析、常见的机器学习阅读理解模型、BERT与机器阅读理解、BERT的模型变体、其他的机器阅读理解模型、模型的集成与部署、项目总结整体的内容
---考核---(可选择,联系教务老师)
「第12章」:NLP项目篇
课程名称:【30439】【4、(2022)Transformer和预训练模型阶段「自由式学习」】
课程内容:该课程主要讲解了自注意力机制以及Transformer、Teansformer的代码实现、基于Transformer的闲聊引擎、BERT中的Fine-tuning实例讲解、XLNet、ALBERT的应用、以及XLNet论文讲解。
---考核---(可选择,联系教务老师)
===============章节分割线===============
【第2阶段】:知识图谱阶段
【监督方式】:强监督
「第1章」:知识图谱理论篇
课程名称:【8564】【知识图谱「解锁式学习」】
课程内容:等待介绍文本
---考核---(可选择,联系教务老师)
「第2章」:知识图谱项目篇
课程名称:【28565】【自然语言处理-人工智能辅助信息抽取「自由式学习」】
课程内容:该课程主要讲解了知识图谱的概念以及应用、中文自然语言处理、文本相关的处理、关系抽取、PCNN、图像预训练、NLP预训练模型、BERT NER实践等知识点
---考核---(可选择,联系教务老师)
「第3章」:知识图谱项目篇
课程名称:【28567】【自然语言处理-医疗知识图谱构建及图表征学习「自由式学习」】
课程内容:该课程主要讲解了数据获取、数据处理、BiLSTM+CRF、Neo4j、图表征学习、已经额外的LSTM知识
---考核---(可选择,联系教务老师)
「第4章」:知识图谱项目篇
课程名称:【30722】【知识图谱项目实战「自由式学习」】
课程内容:该课程主要讲解完整项目的运行和部署、项目需求分析、知识图谱的设计、数据的获取以及导入、程序设计、知识图谱数据可视化等知识点
---考核---(可选择,联系教务老师)
===============章节分割线===============
【第3阶段】:数学阶段
【监督方式】:弱监督
「第1章」:数学加强篇
课程名称:【19968】【机器学习中的数学基础-53集「解锁式学习」】
课程内容:对机器学习中的数学中的微分[极限、导数、费马定理、泰勒、多元函数、偏导数、方向导数、梯度、链式法制、拉格朗日],线性代数[向量、矩阵、张量、行列式、线性方程组、矩阵分解],概率[随机变量、概率分布、贝叶斯定理、期望、方差、大数定律、特征函数、中心极限定理、统计学基础、极大似然估计、zuida后验估计、蒙特卡罗方法、Bootstrap方法、EM算法],最优化方法[最速下降法、共轭梯度法、牛顿法、拟牛顿法、约束非线性优化、KKT条件]等数学知识点的复习
---考核---(可选择,联系教务老师)
===============章节分割线===============
【第4阶段】:基础阶段
【监督方式】:弱监督
「第1章」:编程语言篇
课程名称:【19638】【数据分析-项目合集「自由式学习」】
课程内容:该课程主要讲解了股票分析案例、人口数据分析案例、美国大选案例、用户数据分析案例四个例子来加深数据分析的例子
---考核---(可选择,联系教务老师)
「第2章」:操作系统篇
课程名称:【1219】【Linux零基础课程「解锁式学习」】
课程内容:主要讲解了linux数据库的使用,开发人员的基本操作。必须学习吸收,之后大数据阶段会跟服务器一直关联学习。极其重要。
---考核---(可选择,联系教务老师)
===============章节分割线===============
【第5阶段】:机器学习阶段
【监督方式】:弱监督
「第1章」:机器学习进阶篇
课程名称:【33】【机器学习---算法进阶「解锁式学习」】
课程内容:对机器学习深入的讲解,利用了大量的数学公式进行推导,足以应对工厂面试过程中问到的算法的底层远离的实现。比较难理解,需要多次吸收强化。如对该课程有不适应,请及时跟教务老师联系。
---考核---(可选择,联系教务老师)
「第2章」:机器学习工具篇
课程名称:【24941】【机器学习-Sklearn(第三版)「解锁式学习」】
课程内容:该课程主要讲解了经典算法决策树、随机森林、特征工程数据预处理、经典算法降维算法PCA、逻辑回归、聚类算法KMeans、支持向量机SVM、线性回归、朴素贝叶斯、 XGBoost及其相关案例
---考核---(可选择,联系教务老师)
===============章节分割线===============
【第6阶段】:深度学习阶段
【监督方式】:强监督
「第1章」:深度学习基础篇
课程名称:【20363】【深度学习-【2020版】【深版】「NLP-自由式学习」】
课程内容:深度学习深入知识的讲解,对神经网络等深度学习常用的算法进行了讲解
---考核---(可选择,联系教务老师)
「第2章」:深度学习工具篇
课程名称:【9622】【深度学习-Tensorflow2.0「解锁式学习」】
课程内容:深度学习中TensorFlow2.X版本的讲解与使用。
---考核---(可选择,联系教务老师)
「第3章」:深度学习工具篇
课程名称:【9555】【Pytorch学习「解锁式学习」】
课程内容:深度学习中的Pytorch框架的讲解于使用。
---考核---(可选择,联系教务老师)
===============章节分割线===============
【第7阶段】:说明课程
【监督方式】:强监督
「第1章」:基础和方向的分割阶段
课程名称:【3244】【说明课程(基础知识与项目衔接说明课程)「解锁式学习」】
课程内容:项目阶段与基础阶段的分界点,在该课程之前为基础阶段,之后为项目阶段,如需更改方向,请在该阶段在群里与老师沟通。
---考核---(可选择,联系教务老师)
===============章节分割线===============
【第8阶段】:AI项目合集阶段
【监督方式】:强监督
「第1章」:机器学习练习系列篇
课程名称:【3542】【机器学习-文本主题与分类(5,6)「解锁式学习」】
课程内容:kaggle中对文本的分类项目练习。
---考核---(可选择,联系教务老师)
「第2章」:机器学习练习系列篇
课程名称:【3540】【机器学习-神经网络实现机器翻译(3)「解锁式学习」】
课程内容:等待介绍文本
---考核---(可选择,联系教务老师)
「第3章」:机器学习练习系列篇
课程名称:【30173】【基于Embedding进行IMDB情感文本分析「解锁式学习」】
课程内容:该课程主要讲解了通过Tensorflow2.0实现基于Embedding进行IMDB情感文本分类
---考核---(可选择,联系教务老师)
「第4章」:kaggle比赛系列篇
课程名称:【3539】【4、Kaggle比赛系列-文本主题与分类「解锁式学习」】
课程内容:kaggle中对文本的分类项目练习新增内容。
---考核---(可选择,联系教务老师)
【时间安排】:
学员可以自主安排学习时间。具体的时间可以灵活调整。
【相关规定】:
(1)每天完成今日学习任务,提交相应的csdn或者是有道云笔记之类的链接到每日作业中。老师会进行审核,每个阶段结束,进行阶段测评,测评通过,提交老师发布的通过截图到下一个课程的第一节的阶段卡点之后,方可进行下一章内容的学习。
(2)每个章节结束,如果觉得吸收比较乱,知识点多,可以进行xmind脑图的构造一下整体的思路!
(3)项目阶段,需要录制或者文档落地针对做过的项目的自述!
(4)每天必须按计划完成任务,临时有事需在日报中说明情况即可,长期请假请联系教务老师。
(5)考核不通过需要缴费补考,50元是第一次,每次增加50元,200元封顶(此项如有疑问,可以联系教务老师进行更改)。
【参考博客】:第二天早晨八点半,会有拜师晨报提醒。当中有学生优秀博客,可以查看学生的排版
【监督相关说明】:
弱监督:不需要每天提交作业,直接可以解锁课程,适合于自制力能力强的。
强监督:需要学习完一个课程通过管理员解锁才能继续学习下一个阶段,适合于自制力不够强,已经参加工作的学员。
【工作安排】:
(1)、批改作业,环境安装!还有学习过程中有不会的问题的话,艾特软件安装以及基础答疑老师!
(2)、学习过程中如果有什么问题和疑问,可以艾特答疑老师!
(3)、如果计划需要更改,可以群里艾特我和跟你电话测评沟通的老师进行沟通!
(4)、如果有什么方向上面的疑问,可以艾特相关的答疑老师和计划制定的老师!
(5)、如果不知道找哪位老师的话,或者问题比较紧急的可以艾特教务老师进行处理,或者有什么意见和建议(直接私聊教务老师)!教务老师会进行受理!