机器学习简介
机器学习、深度学习可以做什么?
(自然语言处理、图象识别、传统预测)
机器学习库和框架
scikit learn、TensorFlow
课程定位:
以算法、案例为驱动的学习,浅显易懂的数学知识
注意:参考书比较晦涩难懂,不建议直接读
课程目标:
熟悉机器学习各类算法的原理
掌握算法的使用,能够结合场景解决实际问题
掌握使用机器学习算法库和框架
机器学习课程
特征工程;模型、策略、优化,分类、回归和聚类,TensorFlow,神经网络,图象识别,自然语言处理
机器学习简介
机器学习、深度学习可以做什么?
(自然语言处理、图象识别、传统预测)
机器学习库和框架
scikit learn、TensorFlow
课程定位:
以算法、案例为驱动的学习,浅显易懂的数学知识
注意:参考书比较晦涩难懂,不建议直接读
课程目标:
熟悉机器学习各类算法的原理
掌握算法的使用,能够结合场景解决实际问题
掌握使用机器学习算法库和框架
机器学习课程
特征工程;模型、策略、优化,分类、回归和聚类,TensorFlow,神经网络,图象识别,自然语言处理
sklearn中的信息熵,实际上是信息增益。即父节点的信息熵-子节点的信息熵。
非参数:即不限制数据结构和类型
有监督:有标签
二阶导数是凸函数?
SymPy 符号运算包 函数运算
1.O表示多项式的阶
2.o (n)
temperature是气温, 100度很吓人啦 XD
啊深度啊收到卡后
老师的卷发就到了发掘了深刻的
8
枚举法
for a in range(0,1001):
1、sgd:随机梯度下降()
2、bgd:
3、min-batch:
4、在线学习的好处。样本