很不错的例子,肺癌
很不错的例子,肺癌
Step 2:预处理
Step 1:创建自定义数据集
w = torch.rand(16, 3, 5, 5)
= (ker_num, input_channel, ker_size, ker_size)
Input_channels:
Stocastic: 随即筛选样本
val_set: for detecting overfitting
torch.nn.function
.matmul() 取后两维相乘
unsqueeze:
正:在之前插入
负:在之后插入
.index_select(0, [0, 2])
torch.tensor([2., 3.2])
torch.FloatTensor(2, 3)
Unintialized: 未初始化的tensor
增强学习一般用 DoubleTensor
mysql数据查询
条件查询:
比较条件: > < = != <> 跟在where后面
in 查询 指定一个数据容器
between 表示一个区间 1到10 还可以表示时间范围
null值的判断 如果是一个空值对象的话 用is判断
如果是空字符串的话,则使用 = 判断
排序 order by 【asc升序 desc降序】可以指定多个字段排序;
聚合函数:
count()
max()
min()
length()
sum()
avg()
round()
date()
substr() left right
分组和分页
分组 group by
as 取别名
分组条件的筛选 where having
where 跟在from后面
having跟在group by后面
limit分页 select * from student limit start(起始位置) count(读取数量)
连接查询
内连接:inner join 两种表共同的数据
左连接:left join 参考左边的表为基准查询表,右边的表用null填充;
右连接 right join 参考右边的表为基准查询表,左边的表用null填充
子查询
1、标量查询 一行一列查询 单个值
2、列级子查询 一行多列 多个值
3、行级子查询 多行一列
4、表级子查询 多行多列【用来做数据源】
保存查询结果:
insert into 表名 select 查询来充当数据源;
union去重输出
union all 输出多次查询的结果;
排序算法的稳定性:将原有相等键值的记录维持相对次序。
load_boston 在 1.0 中已弃用,并在 1.2 中删除
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html
scikit-learn 维护者强烈反对使用这个数据集,其中代码的目的是研究和教育数据科学和机器学习中的伦理问题替代方法。
Imputer, 已更新很久了
课程是旧版本, 我为新版本稍作说明
as a reminder for classmates, currently we use 'sklearn' rather than 'scikit-learn' in coding ;)
機器學習推薦書:
1. 機器學習 (西瓜書)
2. Python數據分析與挖掘實戰
3. 機器學習系統設計
4. 面向機器智能TensorFlow實戰
5. TensorFlow技術解析與實戰
少用加号
数据组织方式
一组数据如何保存 数据结构
抽象数据类型:确定数据组织形式,数据上的一组操作,只有相应的接口。