归纳式迁移学习(Inductive Transfer Learning)最常用,其中又分为两类:Multi task learning、Self-taught learning。Multi task learning是源域和目标域都有标签,Self-taught learning是源域没标签,目标域有标签。
多任务迁移学习可以将自编码器中的encoder部分拿出来用,所谓自编码器(auto encoder)就是自己学自己,端对端的对象都是自己,从而训练出一对表达能力很强的encoder和decoder。