自由式学习
748人加入学习
(0人评价)
机器学习-Sklearn(第三版)
价格 免费
该课程属于 1515-小刀-算法方向-金融风控-就业:是 请加入后再学习

回归树

一、参数、属性、接口几乎和分类树相同)

二、回归树没有标签分布均衡问题,没有class_weight

三、参数criterion差异

1、="mse",均方误差

1)父节点和子节点均方误差的差额,本质是样本真实数据和回归结果的差异。

2)在回归树中,MSE是分枝质量衡量指标、回归树回归质量衡量指标。越小越好。

3)回归树接口score返回的是R平方,不是MSE,取值为负无穷到1,MSE总为正,sklearn中为负值

2、="friedman_mse",费尔德曼均方误差

3、="mae",绝对平均误差

[展开全文]

回归树:参数、属性和接口

criterion

回归树衡量分枝质量的指标,支持的标准有三种: 1)输入"mse"使用均方误差mean squared error(MSE),父节点和叶子节点之间的均方误差的差额将被用来作为 特征选择的标准,这种方法通过使用叶子节点的均值来最小化L2损失

2)输入“friedman_mse”使用费尔德曼均方误差,这种指标使用弗里德曼针对潜在分枝中的问题改进后的均方误差

3)输入"mae"使用绝对平均误差MAE(mean absolute error),这种指标使用叶节点的中值来最小化L1损失 属性中最重要的依然是feature_importances_,接口依然是apply, fit, predict, score最核心。

在回归树中,MSE不只是我们的分枝质量衡量指标,也是我们最常用的衡 量回归树回归质量的指标,当我们在使用交叉验证,或者其他方式获取回归树的结果时,我们往往选择均方误差作 为我们的评估(在分类树中这个指标是score代表的预测准确率)。在回归中,我们追求的是,MSE越小越好。然而,回归树的接口score返回的是R平方,并不是MSE。

y尖儿是标签的平均值。虽然均方误差永远为正,但是sklearn当中使用均方误差作为评判标准时,却是计算”负均方误 差“(neg_mean_squared_error)。这是因为sklearn在计算模型评估指标的时候,会考虑指标本身的性质,均 方误差本身是一种误差,所以被sklearn划分为模型的一种损失(loss),因此在sklearn当中,都以负数表示。真正的 均方误差MSE的数值,其实就是neg_mean_squared_error去掉负号的数字。

 

[展开全文]