一半以上的决策树判断错误,才会导致随机森林才会判断错误。
comb是求和。
相同的训练集与参数,随机森林中的树会有不同的判断结果,选择重要的特征进行提问。
estimators,查看森林中树的参数或属性。每棵树中的random_state不一样,导致每棵树都不一样。
random_state固定,随机森林中的树是固定的,但随机挑选的特征,导致树是不一样。随机性越大,效果越好。
bootstrap用于控制抽样技术的参数。
自主集:从原始训练集中进行n次有放回抽样,得到的数据集。自主集会包含63%的原始数据集元素。剩下37%数据可以作为测试模型的数据,称为袋外数据。
wine.target为wine的标签。
一个自助集里,样本A永远不被抽到的概率:(1-1/n)^n
oob_score训练分数。
apply返回所在叶子节点的索引
predict_proba返回每个样本对应类别的标签的概率。