自由式学习
748人加入学习
(0人评价)
机器学习-Sklearn(第三版)
价格 免费
该课程属于 1515-小刀-算法方向-金融风控-就业:是 请加入后再学习

分箱:

1)评分卡核心,本质是离散化连续变量

2)分多少箱子合适?4-5个最佳

3)离散化必然伴随信息损失,IV:用于衡量特征对预测函数的贡献,<0.03特征可以删除,太高的也删除(特征选择)IV可以帮助找出合适的分箱个数。

4)分箱想要达成什么效果?组间差异大,组内差异小,用卡方检验对比箱子相似性,卡方检验p值越大越相似

[展开全文]