error 来源:bias 和 variance
mean: μ
variance: σ^2
s^2 是 σ^2的估测值
E[f*] = f^-: f* 的期望值
简单的模型 Variance 较小,简单的模型受数据波动影响小
复杂模型的 Bias 更小
Regularization ==> 使曲线变平滑6
Cross Validation
error 来源:bias 和 variance
mean: μ
variance: σ^2
s^2 是 σ^2的估测值
E[f*] = f^-: f* 的期望值
简单的模型 Variance 较小,简单的模型受数据波动影响小
复杂模型的 Bias 更小
Regularization ==> 使曲线变平滑6
Cross Validation