cv-自由式学习
1174人加入学习
(0人评价)

x_i: features

input: x^n

output: y^^n

function: f_n

Loss function L(function 的 function): 

  • Input: a function
  • Output: how bad it is
  • L(f) = L(w, b)

Step3: Best Function

f* = arg min L(f)

w*, b* = arg min L(w, b)

Gradient Descent:

  • initial value w^0
  • dL/dw|w=w^0
  • 若 negative,增加 w
  • 若 positive,减小 w
  • η(learning rate): 参数更新的幅度 -η(dL/dw|w=w^0)
  • Local optimal: 局部最优
  • global optimal: 全局最优
  • 两个参数 w, b: 分别对 w, b 求偏微分
  • ▽L: gradient 梯度

convex 凸面的 adj.

引入更复杂的函数:

x_cp^2

Overfitting

Back to Step 1: Redesign

  • x_s = species of x
  • 不同物种,不同 w, b
  • δ(x_s = )
  • = 1, if x_s = Pidgey
  • = 0, otherwise

Back to Step 2: Rularization(调整)

不考虑 b 

select λ

[展开全文]