数据挖掘-自由式学习
607人加入学习
(0人评价)
机器学习---算法进阶
价格 免费
承诺服务
该课程属于 1500-陈同学-算法方向-自然语言处理-就业:是 请加入后再学习

SST (总方差)= SSE() + SSR (残差平方和)

只有无偏估计下成立,否则 SST≥SSE+ SSR

 

局部加权

最重要的问题: 如何度量权重

 

Logistic回归

p(y|x:θ)  y=0, y=1时,写成上述密度函数形式

 

解法1: 从mle求解

极大似然估计的梯度上升算法,本质与梯度下降无区别,梯度上升取正梯度方向,同样设置步长a;梯度下降选取负梯度方向,

线性回归:  假定服从高斯分布,通过MLE进行估计

logistics回归: 假定服从二项分布,通过MLE进行估计

如果都进行梯度下降法估计,会发现求解的方式都是一样的

 

广义线性模型的定义: 因变量不服从正态分布,且因变量与自变量不存在线性关系;广义就是要找一个非线性的关系f,使得转换后更接近因变量的分布

证明是一个广义的线性模型:

对数线性模型:

从对数模型理解 logistics函数

一方面: 从 ln(p/(1-p)) = θx 推导出 p = logistics函数,说明希望对数模型是线性的,从而推导出概率可以用logistics函数表示

另一方面: 从 p=logistics函数 + ln(p/(1-p))对数模型,推导出对数模型是线性的θTx

广义线性模型  → 相似的梯度下降方法

 

解法2: 从损失函数进行求解

(1)对 -1, 1转换为0, 1  进行(yi+1)/2...

 

softmax回归

 

 

鸢尾花数据

分为三个 二分类问题,算出三个AUCi值

micro: 直接算三个平均AUCi,得出AUC

macro: 总体加和,当作一个AUC计算

 

[展开全文]

授课教师

高级算法工程师
老师

课程特色

考试(14)
图文(1)
下载资料(13)
视频(13)