3814-周同学-人工智能学科-数据挖掘方向 扫二维码继续学习 二维码时效为半小时

(0评价)
价格: 免费

3、梯度下降:重要参数max_iter

max_iter为人为设置的步数限制

[展开全文]
3077_Yuki · 2022-07-08 · 自由式学习 0

系数累加法,简单快速的包装法

[展开全文]
3077_Yuki · 2022-07-08 · 自由式学习 0

逻辑回归

一、概述

1、逻辑回归是用于分类的回归算法,可做二分类,也可做多分类

2、逻辑回归的sigmoid函数(记住公式和图像)

z越大g(z)越靠近1,z越小g(z)越靠近0,将任何数据压缩到(0,1)

3、逻辑回归的优点:对线性关系拟合效果极好;计算速度快;返回不是固定0、1,而是小数形式类概率数字

4、目的是求解使模型拟合效果最好的参数,方式是梯度下降SGD

二、linear_model.LogisticRegression

1、损失函数:求解最优参数的工具,用来衡量参数为θ的模型拟合训练集产生的信息损失的大小。

追求损失函数最小化的参数组合。(不求解参数的模型就没有损失函数,比如KNN,决策树)

对逻辑回归过拟合的控制,通过正则化实现。

2、控制过拟合的两个参数

1)penalty

默认="l2",若选择"l1”,参数solver只能使用"liblinear"和"saga"

l1正则化会把参数压缩到0,本质特征选择,越强、0越多、参数越稀疏,防止过拟合。数据维度高:l1正则化。

l2正则化只会让参数尽量小,不会取到0。

2)C:正则化强度导数默认1.0(正则项:损失函数=1:1),越小,对模型惩罚越大,正则化强度越大。

3、重要属性

1)coef_:每个特征对应参数,值越大,对逻辑回归的贡献越大

三、逻辑回归中的特征工程

一般不用PCA,SVD,因为会抹去特征的可解释性;统计方法可以使用,但不必要;嵌入法较高效(尽量保留数据信息&降维)

x_embedded=SelectFromModel(LR_,norm_order=1).fit_transform(x,y)

#参数1:模型
#参数2:threshold是筛选特征的阈值,可以取到的最大值是系数的最大值
abs(LR_.fit(x,y).coef_).max()
#参数3:norm_order=1,使用l1范式,模型删除所有在l1范式下判断无效的特征

 

 

逻辑回归模型评估指标

metric.confusion_matrix

metric.roc_auc_score

metric.accuracy_score

1、向量一般写成列向量

2、模型属性都是在fit之后查看

3、np.linspace(start,end,num)包括end

4、predict返回的是一个预测的值,predict_proba返回的是对于预测为各个类别的概率

[展开全文]
3077_Yuki · 2022-07-08 · 自由式学习 0

逻辑回归

一、概述

1、逻辑回归是用于分类的回归算法,可做二分类,也可做多分类

2、逻辑回归的sigmoid函数(记住公式和图像)

z越大g(z)越靠近1,z越小g(z)越靠近0,将任何数据压缩到(0,1)

3、逻辑回归的优点:对线性关系拟合效果极好;计算速度快;返回不是固定0、1,而是小数形式类概率数字

4、目的是求解使模型拟合效果最好的参数,方式是梯度下降SGD

二、linear_model.LogisticRegression

1、损失函数:求解最优参数的工具,用来衡量参数为θ的模型拟合训练集产生的信息损失的大小。

追求损失函数最小化的参数组合。(不求解参数的模型就没有损失函数,比如KNN,决策树)

对逻辑回归过拟合的控制,通过正则化实现。

2、控制过拟合的两个参数

1)penalty

默认="l2",若选择"l1”,参数solver只能使用"liblinear"和"saga"

l1正则化会把参数压缩到0,本质特征选择,越强、0越多、参数越稀疏,防止过拟合。数据维度高:l1正则化。

l2正则化只会让参数尽量小,不会取到0。

2)C:正则化强度导数默认1.0(正则项:损失函数=1:1),越小,对模型惩罚越大,正则化强度越大。

3、重要属性

1)coef_:每个特征对应参数

三、逻辑回归中的特征工程

一般不用PCA,SVD,因为会抹去特征的可解释性,统计方法可以使用,但不必要

逻辑回归模型评估指标

metric.confusion_matrix

metric.roc_auc_score

metric.accuracy_score

1、向量一般写成列向量

2、模型属性都是在fit之后查看

3、np.linspace(start,end,num)包括end

4、predict返回的是一个预测的值,predict_proba返回的是对于预测为各个类别的概率

5、

[展开全文]
3077_Yuki · 2022-07-08 · 自由式学习 0

逻辑回归

一、概述

1、逻辑回归是用于分类的回归算法,可做二分类,也可做多分类

2、逻辑回归的sigmoid函数(记住公式和图像)

z越大g(z)越靠近1,z越小g(z)越靠近0,将任何数据压缩到(0,1)

3、逻辑回归的优点:对线性关系拟合效果极好;计算速度快;返回不是固定0、1,而是小数形式类概率数字

4、目的是求解使模型拟合效果最好的参数,方式是梯度下降SGD

二、linear_model.LogisticRegression

1、损失函数:求解最优参数的工具,用来衡量参数为θ的模型拟合训练集产生的信息损失的大小。

追求损失函数最小化的参数组合。(不求解参数的模型就没有损失函数,比如KNN,决策树)

对逻辑回归过拟合的控制,通过正则化实现。

2、控制过拟合的两个参数

1)penalty

默认="l2",若选择"l1”,参数solver只能使用"liblinear"和"saga"

l1正则化会把参数压缩到0,本质特征选择,越强、0越多、参数越稀疏,防止过拟合。数据维度高:l1正则化。

l2正则化只会让参数尽量小,不会取到0。

2)C:正则化强度导数默认1.0(正则项:损失函数=1:1),越小,对模型惩罚越大,正则化强度越大。

3、重要属性

1)coef_:每个特征对应参数

 

逻辑回归模型评估指标

metric.confusion_matrix

metric.roc_auc_score

metric.accuracy_score

1、向量一般写成列向量

2、模型属性都是在fit之后查看

3、np.linspace(start,end,num)包括end

4、predict返回的是一个预测的值,predict_proba返回的是对于预测为各个类别的概率

5、

[展开全文]
3077_Yuki · 2022-07-08 · 自由式学习 0

逻辑回归

一、概述

1、逻辑回归是用于分类的回归算法,可做二分类,也可做多分类

2、逻辑回归的sigmoid函数(记住公式和图像)

z越大g(z)越靠近1,z越小g(z)越靠近0,将任何数据压缩到(0,1)

3、逻辑回归的优点:对线性关系拟合效果极好;计算速度快;返回不是固定0、1,而是小数形式类概率数字

4、目的是求解使模型拟合效果最好的参数,方式是梯度下降SGD

二、linear_model.LogisticRegression

1、损失函数:求解最优参数的工具,用来衡量参数为θ的模型拟合训练集产生的信息损失的大小。

追求损失函数最小化的参数组合。(不求解参数的模型就没有损失函数,比如KNN,决策树)

对逻辑回归过拟合的控制,通过正则化实现。

逻辑回归模型评估指标

metric.confusion_matrix

metric.roc_auc_score

metric.accuracy_score

向量一般写成列向量

[展开全文]
3077_Yuki · 2022-07-08 · 自由式学习 0

逻辑回归

一、概述

1、逻辑回归是用于分类的回归算法,可做二分类,也可做多分类

2、逻辑回归的sigmoid函数(记住公式和图像)

z越大g(z)越靠近1,z越小g(z)越靠近0,将任何数据压缩到(0,1)

3、逻辑回归的优点:对线性关系拟合效果极好;计算速度快;返回不是固定0、1,而是小数形式类概率数字

4、目的是求解使模型拟合效果最好的参数,方式是梯度下降SGD

二、linear_model.LogisticRegression

逻辑回归模型评估指标

metric.confusion_matrix

metric.roc_auc_score

metric.accuracy_score

向量一般写成列向量

[展开全文]
3077_Yuki · 2022-07-08 · 自由式学习 0

逻辑回归

一、概述

1、逻辑回归是用于分类的回归算法,可做二分类,也可做多酚

2、逻辑回归的sigmoid函数(记住公式和图像)

z越大g(z)越靠近1,z越小g(z)越靠近0,将任何数据压缩到(0,1)

3、逻辑回归的优点:对线性关系拟合效果极好;计算速度快;返回不是固定0、1,而是小数形式类概率数字

向量一般写成列向量

[展开全文]
3077_Yuki · 2022-07-08 · 自由式学习 0

逻辑回归

一、概述

1、逻辑回归是用于分类的回归算法

2、逻辑回归的sigmoid函数(记住公式和图像)

z越大g(z)越靠近1,z越小g(z)越靠近0,将任何数据压缩到(0,1)

3、 

向量一般写成列向量

[展开全文]
3077_Yuki · 2022-07-08 · 自由式学习 0

SVD比PCA快得多

一、2个重要参数

1、svd_solver

"auto":数据量小选full,大则选randomized

"full":生成完整的矩阵,数据量不大一般选用

"randomized":适合特征矩阵巨大,计算量大。

"arpack”:适合特征矩阵大,一般用于特征矩阵为稀疏矩阵(每一列为0,1组成,大部分为0)

注:一般选"auto", 算不出来找"randomized"

2、random_state: 

svd_solver为"randomized""arpack”生效,通常选"auto"

二、重要属性components_:提出的值是V(k,n),表示新特征空间,可视化可以看出提取了什么重要信息,n维压缩到k维

[展开全文]
3077_Yuki · 2022-07-07 · 自由式学习 0

SVD比PCA快得多

一、2个重要参数

1、svd_solver

"auto":数据量小选full,大则选randomized

"full":生成完整的矩阵,数据量不大一般选用

"randomized":适合特征矩阵巨大,计算量大。

"arpack”:适合特征矩阵大,一般用于特征矩阵为稀疏矩阵(每一列为0,1组成,大部分为0)

注:一般选"auto", 算不出来找"randomized"

2、random_state: 

svd_solver为"randomized""arpack”生效

 

[展开全文]
3077_Yuki · 2022-07-07 · 自由式学习 0

3)按信息量占比选择

n_components=[0,1]之间浮点数,且让参数scd_solver='full'(n_components=0.97,scd_solver='full'选出使保留信息量超过0.97的信息量的特征),比较快可以多用

[展开全文]
3077_Yuki · 2022-07-07 · 自由式学习 0

降维算法

一、维度概述

1、对数组和Series,shape中返回几个数字就是几维,几个方括号就是几维

2、特征矩阵,DataFrame,几个特征就是几维,对应图中几个坐标轴,降维降的是特征数量

二、降维算法decomposition.PCA:主成分分析

1、PCA使用的信息量衡量指标为样本方差,越大,该特征带有信息量越多。

2、降维后找到的每个新特征向量叫“主成分”,新特征没有可读性,属于特征创造。线性回归不适合使用PCA。

3、重要参数

1)n_components:降维后要保留的特征数量,一般选 0-最小维度(特征数和标签数比较小的值) 范围内整数,默认为最小维度。如果需要可视化,取2或3.

2)如何选择n_components?

累积可解释方差贡献率曲线。横坐标:降维后保留的特征个数,纵坐标:累积可解释方差贡献率(选1个特征多少总信息,2个特征多少总信息...)

plt.plot([1,2,3,4],np.cumsum(pca_line.explained_variance_ratio_))

最大似然估计自选超参数。n_components="mle",计算量大

4、重要属性

1)属性explained_variance:查看降维后每个新特征信息量大小

2)属性explained_variance_ratio:查看降维后每个新特征信息量占原始数据信息量百分比

三、降维算法SVD

降维算法计算量很大

[展开全文]
3077_Yuki · 2022-07-07 · 自由式学习 0

降维算法

一、维度概述

1、对数组和Series,shape中返回几个数字就是几维,几个方括号就是几维

2、特征矩阵,DataFrame,几个特征就是几维,对应图中几个坐标轴,降维降的是特征数量

二、降维算法decomposition.PCA:主成分分析

1、PCA使用的信息量衡量指标为样本方差,越大,该特征带有信息量越多。

2、降维后找到的每个新特征向量叫“主成分”,新特征没有可读性,属于特征创造。线性回归不适合使用PCA。

3、重要参数

三、降维算法SVD

降维算法计算量很大

[展开全文]
3077_Yuki · 2022-07-07 · 自由式学习 0

一、维度概述

1、对数组和Series,shape中返回几个数字就是几维,几个方括号就是几维

2、特征矩阵,DataFrame,几个特征就是几维,降维降的是特征数量

二、降维算法decomposition.PCA:主成分分析

三、降维算法SVD

[展开全文]
3077_Yuki · 2022-07-07 · 自由式学习 0

包装法:

特征选择(专门算法)和训练同时进行,可以与任何有coef_, feature_importances_属性的模型一起使用,计算成本小于嵌入法

  • 使用feature_selection.RFE类:迭代选取特征。
  • 参数estimator:实例化后的评估器,n_features_to_select:想选的特征数,step:每迭代一次删去的特征数
  • 属性.support_:特征是否被选中的不二矩阵,.ranking_:特征重要性排名,前面越重要。(训练后查看属性,不要转化)
  • 计算量大,优先使用方差过滤和互信息法;逻辑回归,嵌入法优先;支持向量机,包装法优先;没思路,过滤法开始
[展开全文]
3077_Yuki · 2022-07-07 · 自由式学习 0

嵌入法

1、特征选择与算法训练同时进行,算法自己选择用哪些特征。计算速度与算法相关,可能十分缓慢,大型数据中优先选过滤法或包装法

2、使用模块feature_selection.SelectFromModel,可以与任何有coef_, feature_importances_属性的模型一起使用

3、两个重要属性
1)estimator:模型评估器,模型要先实例化

2)threshold:特征重要性阈值,低于则删除,通过学习曲线确定这个属性的最佳取值

[展开全文]
3077_Yuki · 2022-07-07 · 自由式学习 0