线性回归和逻辑归回/分类问题的区别:
1、函数式不同:
linear regression
y=wx+b;
ligistic regression——在线性回归的基础上加了一个激活函数
2、目标不同:
线性回顾的目标是预测值接近于真实值;
逻辑回归问题的目标是在x的条件下训练得到y值的概率和当自变量为x时,真实的等于y的概率之间差值最小
无法直接最大化准确率:
准确率的公式为:
分母为所有的y值,分子为预测值等于真实值的个数
(1)存在梯度为0的情况;
计算得到的p=0.4,调整权重之后得到0.45,虽然概率增加了,但是accuray没有发生变化
(2)也有可能存在梯度爆炸的情况
当p值从0.499变动到0.501时,准确的个数增加了一个,当y值(=5)数量较少是,准确个数从3变为4,那么准确率从0.6变动到0.8,准确率变化了0.2,而概率值变动了0.002,则会存在断层连续的情况,也就是梯度爆炸
多类别分类问题——softmax激活函数